Hyperparameters

learning_rate=2e-5
per_device_train_batch_size=14
per_device_eval_batch_size=14
weight_decay=0.01
save_total_limit=3
num_train_epochs=3
predict_with_generate=True
fp16=True

Training Output

global_step=4248,
training_loss=2.4160910424988598,
metrics={'train_runtime': 14565.4519,
'train_samples_per_second': 4.082,
'train_steps_per_second': 0.292,
'total_flos': 1.7179021728232243e+17,
'train_loss': 2.4160910424988598,
'epoch': 3.0}

Training Results

Epoch Training Loss Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleu Gen Len
1 2.467100 2.303269 0.410900 0.136200 0.235900 0.235900 0.465700 182.332800
2 2.386700 2.281062 0.426300 0.142300 0.246800 0.246700 0.525200 143.990900
3 2.362000 2.274931 0.428400 0.143800 0.248300 0.248200 0.532000 139.585900
Downloads last month
25
Safetensors
Model size
571M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train usakha/Pegasus_MedPaper_model