Edit model card

Visualize in Weights & Biases

distilbert-base-uncased-finetuned-squad

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.4253

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss
4.635 1.0 1384 4.5790
4.4544 2.0 2768 4.4523
4.2617 3.0 4152 4.3310
4.1031 4.0 5536 4.2816
3.9956 5.0 6920 4.2679
3.8676 6.0 8304 4.2379
3.7723 7.0 9688 4.3650
3.6775 8.0 11072 4.2837
3.5571 9.0 12456 4.3691
3.469 10.0 13840 4.3981
3.3777 11.0 15224 4.4369
3.2817 12.0 16608 4.5183
3.1812 13.0 17992 4.6001
3.0944 14.0 19376 4.6602
3.0193 15.0 20760 4.7157
2.9398 16.0 22144 4.7307
2.8544 17.0 23528 4.8100
2.7735 18.0 24912 4.9065
2.7244 19.0 26296 4.9776
2.6561 20.0 27680 5.0650
2.5995 21.0 29064 5.1428
2.5324 22.0 30448 5.1684
2.4836 23.0 31832 5.1686
2.4398 24.0 33216 5.2283
2.4037 25.0 34600 5.2688
2.3645 26.0 35984 5.3086
2.3382 27.0 37368 5.3551
2.3117 28.0 38752 5.4321
2.2725 29.0 40136 5.4103
2.2693 30.0 41520 5.4253

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
66.4M params
Tensor type
F32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for toorgil/distilbert-base-uncased-finetuned-squad

Finetuned
(6387)
this model