Edit model card

lc_cate

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3148
  • Accuracy: 0.7535
  • F1: 0.7694
  • Precision: 0.7812
  • Recall: 0.7579

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 32 0.2704 0.7415 0.7640 0.7874 0.7421
No log 2.0 64 0.2764 0.7275 0.7497 0.7726 0.7282
No log 3.0 96 0.2802 0.7495 0.7675 0.7859 0.75
No log 4.0 128 0.2915 0.7435 0.7614 0.7796 0.7440
No log 5.0 160 0.3044 0.7214 0.7472 0.7717 0.7242
No log 6.0 192 0.2972 0.7595 0.7737 0.7881 0.7599
No log 7.0 224 0.3061 0.7375 0.7626 0.7735 0.7520
No log 8.0 256 0.3049 0.7615 0.7759 0.7862 0.7659
No log 9.0 288 0.3073 0.7475 0.7657 0.7798 0.7520
No log 10.0 320 0.3067 0.7515 0.7705 0.7856 0.7560
No log 11.0 352 0.3187 0.7455 0.7647 0.7822 0.7480
No log 12.0 384 0.3148 0.7535 0.7694 0.7812 0.7579

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
142M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tangminhanh/lc_cate

Finetuned
(106)
this model