Llama3.1-8B-QA_CoT-LAW-Instruct-r64

This model is a fine-tuned version of meta-llama/Llama-3.1-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.5851 0.0089 200 0.6076
0.5957 0.0178 400 0.5905
0.6387 0.0267 600 0.5838
0.5579 0.0356 800 0.5772
0.5691 0.0444 1000 0.5704
0.5905 0.0533 1200 0.5665
0.5664 0.0622 1400 0.5619
0.5537 0.0711 1600 0.5583
0.5937 0.08 1800 0.5558
0.5942 0.0889 2000 0.5535
0.4662 0.0978 2200 0.5509
0.5291 0.1067 2400 0.5480
0.5892 0.1156 2600 0.5467
0.535 0.1244 2800 0.5433
0.5375 0.1333 3000 0.5417
0.5217 0.1422 3200 0.5401
0.5701 0.1511 3400 0.5364
0.5183 0.16 3600 0.5353
0.5149 0.1689 3800 0.5345
0.5166 0.1778 4000 0.5321
0.5322 0.1867 4200 0.5304
0.5882 0.1956 4400 0.5286
0.5571 0.2044 4600 0.5266
0.5265 0.2133 4800 0.5258
0.477 0.2222 5000 0.5224
0.5099 0.2311 5200 0.5220
0.5123 0.24 5400 0.5206
0.4467 0.2489 5600 0.5195
0.5461 0.2578 5800 0.5179
0.4798 0.2667 6000 0.5167
0.5436 0.2756 6200 0.5150
0.5304 0.2844 6400 0.5134
0.4854 0.2933 6600 0.5116
0.5618 0.3022 6800 0.5112
0.537 0.3111 7000 0.5099
0.5352 0.32 7200 0.5088
0.4811 0.3289 7400 0.5082
0.452 0.3378 7600 0.5065
0.5921 0.3467 7800 0.5049
0.5043 0.3556 8000 0.5046
0.5269 0.3644 8200 0.5028
0.5481 0.3733 8400 0.5013
0.5285 0.3822 8600 0.5009
0.5726 0.3911 8800 0.4998
0.5535 0.4 9000 0.4984
0.5185 0.4089 9200 0.4976
0.5432 0.4178 9400 0.4963
0.4337 0.4267 9600 0.4953
0.4643 0.4356 9800 0.4948
0.4715 0.4444 10000 0.4932
0.4945 0.4533 10200 0.4925
0.5382 0.4622 10400 0.4916
0.4542 0.4711 10600 0.4908
0.5242 0.48 10800 0.4900
0.5305 0.4889 11000 0.4883
0.5547 0.4978 11200 0.4877
0.4623 0.5067 11400 0.4870
0.501 0.5156 11600 0.4862
0.5399 0.5244 11800 0.4851
0.4667 0.5333 12000 0.4846
0.5373 0.5422 12200 0.4836
0.4633 0.5511 12400 0.4827
0.473 0.56 12600 0.4820
0.5364 0.5689 12800 0.4812
0.4721 0.5778 13000 0.4805
0.5895 0.5867 13200 0.4797
0.5211 0.5956 13400 0.4787
0.4942 0.6044 13600 0.4780
0.4934 0.6133 13800 0.4773
0.5101 0.6222 14000 0.4767
0.4187 0.6311 14200 0.4761
0.5371 0.64 14400 0.4752
0.5041 0.6489 14600 0.4745
0.4861 0.6578 14800 0.4740
0.4723 0.6667 15000 0.4733
0.4193 0.6756 15200 0.4727
0.5096 0.6844 15400 0.4720
0.4864 0.6933 15600 0.4715
0.479 0.7022 15800 0.4711
0.4329 0.7111 16000 0.4704
0.565 0.72 16200 0.4700
0.5131 0.7289 16400 0.4695
0.4722 0.7378 16600 0.4692
0.5044 0.7467 16800 0.4686
0.4701 0.7556 17000 0.4681
0.4476 0.7644 17200 0.4677
0.4116 0.7733 17400 0.4672
0.4345 0.7822 17600 0.4668
0.469 0.7911 17800 0.4665
0.5491 0.8 18000 0.4661
0.531 0.8089 18200 0.4658
0.4313 0.8178 18400 0.4655
0.5244 0.8267 18600 0.4652
0.4248 0.8356 18800 0.4649
0.5095 0.8444 19000 0.4647
0.4436 0.8533 19200 0.4645
0.5154 0.8622 19400 0.4643
0.5023 0.8711 19600 0.4641
0.5312 0.88 19800 0.4639
0.4934 0.8889 20000 0.4638
0.4962 0.8978 20200 0.4637
0.4964 0.9067 20400 0.4636
0.4966 0.9156 20600 0.4635
0.4303 0.9244 20800 0.4634
0.4531 0.9333 21000 0.4633
0.439 0.9422 21200 0.4633
0.4537 0.9511 21400 0.4633
0.4511 0.96 21600 0.4632
0.4713 0.9689 21800 0.4632
0.5265 0.9778 22000 0.4632
0.4636 0.9867 22200 0.4632
0.4287 0.9956 22400 0.4632

Framework versions

  • PEFT 0.12.0
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.0.0
  • Tokenizers 0.21.0
Downloads last month
139
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for strongpear/Llama3.1-8B-QA_CoT-LAW-Instruct-r64

Adapter
(146)
this model