modello_finetuning1

This model is a fine-tuned version of distilbert-base-multilingual-cased on the swiss_law_area_prediction dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0506
  • Precision: 0.9922
  • Recall: 0.9902
  • F1: 0.9911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.0834 0.38 500 0.1812 0.9793 0.9677 0.9730
0.1029 0.76 1000 0.0973 0.9875 0.9834 0.9854
0.0066 1.15 1500 0.0647 0.9864 0.9886 0.9875
0.0008 1.53 2000 0.0619 0.9913 0.9893 0.9902
0.0003 1.91 2500 0.0506 0.9922 0.9902 0.9911

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for soniarocca31/modello_finetuning1

Finetuned
(237)
this model

Evaluation results