Edit model card

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0498
  • Precision: 0.8132
  • Recall: 0.8376
  • F1: 0.8252
  • Accuracy: 0.8408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 41.67 250 1.0301 0.7519 0.7964 0.7735 0.7954
1.0019 83.33 500 0.8414 0.7996 0.8331 0.8160 0.8396
1.0019 125.0 750 0.9117 0.8097 0.8376 0.8234 0.8417
0.0561 166.67 1000 0.9434 0.8097 0.8376 0.8234 0.8408
0.0561 208.33 1250 1.0014 0.8049 0.8338 0.8191 0.8404
0.0208 250.0 1500 1.0132 0.8081 0.8353 0.8215 0.8400
0.0208 291.67 1750 1.0279 0.8154 0.8398 0.8274 0.8417
0.0133 333.33 2000 1.0402 0.8119 0.8368 0.8242 0.8408
0.0133 375.0 2250 1.0495 0.8154 0.8398 0.8274 0.8417
0.0108 416.67 2500 1.0498 0.8132 0.8376 0.8252 0.8408

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results