bert-base-uncased-finetuned-smsspam

This model is a fine-tuned version of bert-base-uncased on the sms_spam dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0637
  • Accuracy: 0.9904
  • Precision: 0.9815
  • Recall: 0.9464
  • F1: 0.9636

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0828 1.0 593 0.0538 0.9892 0.9725 0.9464 0.9593
0.0269 2.0 1186 0.1792 0.9677 0.8244 0.9643 0.8889
0.0229 3.0 1779 0.0623 0.9916 0.9817 0.9554 0.9683
0.0043 4.0 2372 0.0637 0.9904 0.9815 0.9464 0.9636

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shre-db/bert-base-uncased-finetuned-smsspam

Finetuned
(2426)
this model

Dataset used to train shre-db/bert-base-uncased-finetuned-smsspam

Evaluation results