Edit model card

bert-small-spm

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5919
  • Accuracy: 0.5095

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 768
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 14
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.3946 1.0 69473 3.2473 0.4299
3.1526 2.0 138946 2.9987 0.4583
3.0496 3.0 208419 2.8875 0.4715
2.9923 4.0 277892 2.8258 0.4788
2.9429 5.0 347365 2.7765 0.4849
2.912 6.0 416838 2.7482 0.4890
2.8813 7.0 486311 2.7103 0.4938
2.8609 8.0 555784 2.6881 0.4963
2.8352 9.0 625257 2.6702 0.4991
2.8163 10.0 694730 2.6510 0.5010
2.8026 11.0 764203 2.6246 0.5046
2.7894 12.0 833676 2.6172 0.5055
2.7728 13.0 903149 2.5994 0.5083
2.761 14.0 972622 2.5919 0.5095

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.12.0+cu116
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.