Edit model card

segformer-b0-drivable-area_segmentation

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2781
  • Mean Iou: 0.3551
  • Mean Accuracy: 0.4409
  • Overall Accuracy: 0.9059
  • Per Category Iou: [0.16086782865321247, 0.904459670467452, 0.0]
  • Per Category Accuracy: [0.39100126742712293, 0.9316527965687352, 0.0]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.0717 2.44 100 0.3113 0.3302 0.3801 0.9033 [0.08799146351473365, 0.902610436143179, 0.0] [0.2023568751179786, 0.9379215030926394, 0.0]
0.0079 4.88 200 0.2781 0.3551 0.4409 0.9059 [0.16086782865321247, 0.904459670467452, 0.0] [0.39100126742712293, 0.9316527965687352, 0.0]

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
17
Inference API
Unable to determine this model’s pipeline type. Check the docs .