Distilbert-uncased-AS
Este es un modelo de finetuning de distilbert-base-uncased sobre un dataset propios de tweets. Se logra una error cuadrático bajo lo cual quiere decir que los valores predichos son muy cercanos a los observables o gold.
- Loss: 0.3510
- Rmse: 0.2543
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rmse |
---|---|---|---|---|
0.2091 | 1.0 | 642 | 0.1933 | 0.3052 |
0.1334 | 2.0 | 1284 | 0.1909 | 0.2481 |
0.0684 | 3.0 | 1926 | 0.2617 | 0.2466 |
0.0355 | 4.0 | 2568 | 0.3113 | 0.2513 |
0.0116 | 5.0 | 3210 | 0.3510 | 0.2543 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for raulgdp/Distilbert-Analisis-sentimientos
Base model
distilbert/distilbert-base-uncased