layoutxlm-finetuned-xfund-fr
This model is a fine-tuned version of microsoft/layoutxlm-base on the XFUND dataset (French split).
Model usage
Note that this model requires Tesseract, French package, in order to perform inference. You can install it using !sudo apt-get install tesseract-ocr-fra
.
Here's how to use this model:
from transformers import AutoProcessor, AutoModelForTokenClassification
import torch
from PIL import Image
processor = AutoProcessor.from_pretrained("nielsr/layoutxlm-finetuned-xfund-fr")
model = AutoModelForTokenClassification.from_pretrained(nielsr/layoutxlm-finetuned-xfund-fr")
# assuming you have a French document, turned into an image
image = Image.open("...").convert("RGB")
# prepare for the model
encoding = processor(image, padding="max_length", max_length=512, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**encoding)
logits = outputs.logits
predictions = logits.argmax(-1)
Intended uses & limitations
This model can be used for NER on French scanned documents. It can recognize 4 categories: "question", "answer", "header" and "other".
Training and evaluation data
This checkpoint used the French portion of the multilingual XFUND dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
Training results
Framework versions
- Transformers 4.22.1
- Pytorch 1.10.0+cu111
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 64
Inference API (serverless) has been turned off for this model.
Model tree for nielsr/layoutxlm-finetuned-xfund-fr
Base model
microsoft/layoutxlm-base