distilrubert-tiny-cased-conversational-v1_empathy_preprocessed_punct_lowercasing

This model is a fine-tuned version of DeepPavlov/distilrubert-tiny-cased-conversational-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6036
  • Accuracy: 0.7458
  • F1: 0.7409
  • Precision: 0.7420
  • Recall: 0.7458

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0001
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0953 1.0 9 1.0692 0.4661 0.3740 0.3740 0.4661
1.066 2.0 18 1.0242 0.5593 0.5491 0.5446 0.5593
1.0119 3.0 27 0.9259 0.6102 0.6106 0.6147 0.6102
0.9118 4.0 36 0.8659 0.5847 0.5349 0.5835 0.5847
0.8921 5.0 45 0.7925 0.6356 0.6133 0.6275 0.6356
0.83 6.0 54 0.7776 0.6271 0.6087 0.6199 0.6271
0.8015 7.0 63 0.7675 0.6695 0.6601 0.6871 0.6695
0.7334 8.0 72 0.7133 0.6780 0.6659 0.6748 0.6780
0.696 9.0 81 0.6939 0.6864 0.6758 0.6833 0.6864
0.6349 10.0 90 0.6555 0.7119 0.7057 0.7085 0.7119
0.6482 11.0 99 0.6585 0.7288 0.7202 0.7339 0.7288
0.5924 12.0 108 0.6223 0.7373 0.7332 0.7343 0.7373
0.5437 13.0 117 0.6364 0.7288 0.7231 0.7296 0.7288
0.5653 14.0 126 0.6158 0.7373 0.7266 0.7342 0.7373
0.5314 15.0 135 0.6104 0.7458 0.7439 0.7435 0.7458
0.4912 16.0 144 0.6119 0.7458 0.7433 0.7442 0.7458
0.4819 17.0 153 0.6040 0.7458 0.7452 0.7448 0.7458
0.4873 18.0 162 0.6113 0.7288 0.7248 0.7275 0.7288
0.4729 19.0 171 0.6035 0.7373 0.7292 0.7341 0.7373
0.4654 20.0 180 0.6036 0.7458 0.7409 0.7420 0.7458

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.