Whisper Medium Hindi -megha sharma

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4333
  • Wer: 18.0203

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 25000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0669 3.3898 1000 0.2086 20.9684
0.0115 6.7797 2000 0.2637 19.7579
0.0034 10.1695 3000 0.3012 19.6408
0.0026 13.5593 4000 0.3179 19.2893
0.0014 16.9492 5000 0.3242 18.7817
0.0024 20.3390 6000 0.3348 19.1624
0.0024 23.7288 7000 0.3421 19.7774
0.0006 27.1186 8000 0.3511 18.6939
0.0008 30.5085 9000 0.3632 18.8989
0.0007 33.8983 10000 0.3600 18.7622
0.0006 37.2881 11000 0.3470 18.4791
0.0002 40.6780 12000 0.3548 18.2936
0.0001 44.0678 13000 0.3711 18.0594
0.0006 47.4576 14000 0.3733 18.2839
0.0003 50.8475 15000 0.3766 18.1667
0.0 54.2373 16000 0.3745 18.0203
0.0 57.6271 17000 0.3914 17.8739
0.0 61.0169 18000 0.4003 17.9032
0.0 64.4068 19000 0.4081 17.8641
0.0 67.7966 20000 0.4153 17.8544
0.0 71.1864 21000 0.4219 17.8544
0.0 74.5763 22000 0.4281 18.0105
0.0 77.9661 23000 0.4333 18.0203

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
764M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for meg51/whisper-medium-hindi-20000

Finetuned
(476)
this model

Dataset used to train meg51/whisper-medium-hindi-20000

Evaluation results