Edit model card

torgo_xlsr_finetune_F01

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2809
  • Wer: 0.2462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
3.7203 0.83 1000 3.5860 1.0
3.3181 1.66 2000 3.2148 1.0
1.547 2.49 3000 1.6683 0.8497
0.8041 3.32 4000 1.1466 0.6036
0.5827 4.15 5000 1.1892 0.5093
0.5022 4.98 6000 1.1251 0.4295
0.4373 5.81 7000 1.4837 0.4270
0.3729 6.64 8000 1.1526 0.3430
0.3448 7.47 9000 1.0968 0.3489
0.2964 8.3 10000 1.2292 0.3014
0.2806 9.13 11000 1.4337 0.3345
0.2684 9.96 12000 1.4606 0.3472
0.2587 10.79 13000 1.1020 0.2937
0.2187 11.62 14000 1.3086 0.3192
0.2052 12.45 15000 1.3270 0.2912
0.1757 13.28 16000 1.2323 0.2784
0.2061 14.11 17000 1.1289 0.2716
0.1749 14.94 18000 1.2851 0.2784
0.1476 15.77 19000 1.1545 0.2547
0.1446 16.6 20000 1.2718 0.2487
0.1319 17.43 21000 1.2026 0.2487
0.1533 18.26 22000 1.2299 0.2530
0.1349 19.09 23000 1.3010 0.2513
0.1185 19.92 24000 1.2809 0.2462

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.