drone-DinoVdeau-from-binary is a fine-tuned version of drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs. It achieves the following results on the test set:

  • Loss: 0.4061
  • RMSE: 0.2019
  • MAE: 0.1446
  • KL Divergence: 0.9802

Model description

drone-DinoVdeau-from-binary is a model built on top of drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the estimated number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 1272 394 391 2057
Acropore_digitised 624 223 217 1064
Acropore_tabular 344 144 125 613
Algae 5236 1580 1617 8433
Dead_coral 2251 650 655 3556
Millepore 233 96 97 426
No_acropore_encrusting 802 266 285 1353
No_acropore_massive 2381 826 822 4029
No_acropore_sub_massive 2020 625 651 3296
Rock 6151 2004 2004 10159
Rubble 5170 1648 1627 8445
Sand 6121 2019 1978 10118

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 62.0
  • Learning Rate: 0.001
  • Train Batch Size: 16
  • Eval Batch Size: 16
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss MAE RMSE KL div Learning Rate
1 0.43063807487487793 0.1621 0.2210 1.0069 0.001
2 0.4245865046977997 0.1547 0.2179 1.3119 0.001
3 0.422325998544693 0.1554 0.2158 1.0982 0.001
4 0.41912660002708435 0.1552 0.2142 1.0414 0.001
5 0.41713497042655945 0.1541 0.2123 1.0698 0.001
6 0.42093637585639954 0.1520 0.2140 1.1959 0.001
7 0.4166290760040283 0.1530 0.2126 1.1709 0.001
8 0.41946443915367126 0.1556 0.2143 0.9712 0.001
9 0.41668570041656494 0.1524 0.2121 1.1432 0.001
10 0.4186115860939026 0.1535 0.2139 0.9121 0.001
11 0.41557687520980835 0.1536 0.2114 0.9950 0.001
12 0.41883811354637146 0.1555 0.2139 1.0106 0.001
13 0.41630858182907104 0.1553 0.2121 1.1482 0.001
14 0.4193180799484253 0.1546 0.2138 1.2111 0.001
15 0.416218638420105 0.1542 0.2121 1.2043 0.001
16 0.41389620304107666 0.1528 0.2102 1.0828 0.001
17 0.4171081781387329 0.1564 0.2118 1.0006 0.001
18 0.4146382212638855 0.1507 0.2107 1.0514 0.001
19 0.41857486963272095 0.1532 0.2114 0.9575 0.001
20 0.41434723138809204 0.1513 0.2108 1.1648 0.001
21 0.4195358157157898 0.1533 0.2123 1.2950 0.001
22 0.4339658319950104 0.1524 0.2110 inf 0.001
23 0.43265336751937866 0.1517 0.2085 nan 0.0001
24 0.4384593963623047 0.1493 0.2092 nan 0.0001
25 0.4271779954433441 0.1490 0.2074 inf 0.0001
26 0.41048941016197205 0.1480 0.2075 1.1903 0.0001
27 0.4096038341522217 0.1494 0.2067 0.9915 0.0001
28 0.4104350507259369 0.1493 0.2075 0.9669 0.0001
29 0.40966179966926575 0.1469 0.2069 1.0433 0.0001
30 0.4094092547893524 0.1490 0.2065 0.9082 0.0001
31 0.40909385681152344 0.1470 0.2065 1.0120 0.0001
32 0.4084269404411316 0.1483 0.2060 0.9708 0.0001
33 0.40824124217033386 0.1474 0.2057 0.9317 0.0001
34 0.40851354598999023 0.1481 0.2061 0.9619 0.0001
35 0.4072923958301544 0.1466 0.2054 1.0523 0.0001
36 0.40741708874702454 0.1460 0.2052 1.0622 0.0001
37 0.40657544136047363 0.1456 0.2047 1.0201 0.0001
38 0.406360387802124 0.1459 0.2045 1.0557 0.0001
39 0.4077896773815155 0.1469 0.2056 1.0055 0.0001
40 0.4068063199520111 0.1464 0.2049 0.9849 0.0001
41 0.40890073776245117 0.1489 0.2063 0.8999 0.0001
42 0.4068816602230072 0.1463 0.2049 1.0617 0.0001
43 0.40578988194465637 0.1450 0.2041 1.0520 0.0001
44 0.4070681035518646 0.1475 0.2050 1.0054 0.0001
45 0.40669572353363037 0.1440 0.2047 1.1386 0.0001
46 0.40670666098594666 0.1457 0.2047 1.0253 0.0001
47 0.4062415659427643 0.1473 0.2043 1.0430 0.0001
48 0.4064981937408447 0.1457 0.2048 1.1041 0.0001
49 0.40709760785102844 0.1463 0.2052 1.0702 0.0001
50 0.40644556283950806 0.1479 0.2042 0.8917 1e-05
51 0.40579161047935486 0.1437 0.2041 0.9960 1e-05
52 0.40528106689453125 0.1446 0.2037 1.0567 1e-05
53 0.4056229293346405 0.1462 0.2039 1.0205 1e-05
54 0.4058997631072998 0.1441 0.2041 0.9905 1e-05
55 0.4060685932636261 0.1471 0.2041 0.9379 1e-05
56 0.40592971444129944 0.1454 0.2041 0.9696 1e-05
57 0.4058408737182617 0.1460 0.2041 1.0591 1e-05
58 0.4063320457935333 0.1460 0.2043 0.9276 1e-05
59 0.4056239724159241 0.1453 0.2038 0.9794 1.0000000000000002e-06
60 0.40571752190589905 0.1446 0.2040 1.0349 1.0000000000000002e-06
61 0.4058452248573303 0.1449 0.2041 0.9860 1.0000000000000002e-06
62 0.4054276943206787 0.1446 0.2037 0.9528 1.0000000000000002e-06

Framework Versions

  • Transformers: 4.41.0
  • Pytorch: 2.5.0+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1
Downloads last month
6
Safetensors
Model size
306M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .