zephyr-7b-dpo-lora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: -7.5416
  • Rewards/chosen: -29.9194
  • Rewards/rejected: -39.8539
  • Rewards/accuracies: 0.6151
  • Rewards/margins: 9.9345
  • Logps/rejected: -633.4722
  • Logps/chosen: -588.9970
  • Logits/rejected: -1.0751
  • Logits/chosen: -1.2630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
-0.2007 1.0 969 -0.0988 -1.1416 -2.4993 0.6746 1.3577 -259.9262 -301.2188 -1.9876 -2.0976
-2.3739 2.0 1938 -3.0140 -12.9185 -17.8885 0.6587 4.9699 -413.8172 -418.9880 -1.4397 -1.5909
-5.7169 3.0 2907 -7.5416 -29.9194 -39.8539 0.6151 9.9345 -633.4722 -588.9970 -1.0751 -1.2630

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jikaixuan/zephyr-7b-dpo-lora

Finetuned
(810)
this model