model-v2-2024-04-22
This model is a fine-tuned version of microsoft/layoutlmv3-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7650
- Precision: 0.7666
- Recall: 0.7514
- F1: 0.7589
- Accuracy: 0.8762
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 2.22 | 100 | 1.2087 | 0.5724 | 0.2458 | 0.3439 | 0.7248 |
No log | 4.44 | 200 | 0.7936 | 0.6667 | 0.5650 | 0.6116 | 0.82 |
No log | 6.67 | 300 | 0.6730 | 0.7273 | 0.6780 | 0.7018 | 0.8543 |
No log | 8.89 | 400 | 0.6465 | 0.7618 | 0.7316 | 0.7464 | 0.8724 |
0.7871 | 11.11 | 500 | 0.6474 | 0.7388 | 0.7429 | 0.7408 | 0.8657 |
0.7871 | 13.33 | 600 | 0.7060 | 0.7514 | 0.7429 | 0.7472 | 0.8724 |
0.7871 | 15.56 | 700 | 0.7356 | 0.7507 | 0.7401 | 0.7454 | 0.8705 |
0.7871 | 17.78 | 800 | 0.7483 | 0.7522 | 0.7373 | 0.7447 | 0.8695 |
0.7871 | 20.0 | 900 | 0.7577 | 0.7572 | 0.7401 | 0.7486 | 0.8724 |
0.1672 | 22.22 | 1000 | 0.7650 | 0.7666 | 0.7514 | 0.7589 | 0.8762 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.13.3
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.