Edit model card

hamsa-tiny-pretrained

This model is a fine-tuned version of nadsoft/Hamsa-tiny on the nadsoft/QASR-Speech-Resource default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3795
  • Wer: 28.7264

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 50000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6597 0.1 2500 0.6394 48.8384
0.5442 0.2 5000 0.5455 41.8543
0.4954 0.3 7500 0.5018 39.8609
0.474 0.4 10000 0.4770 38.5534
0.4696 0.5 12500 0.4566 36.2515
0.4312 0.6 15000 0.4433 36.8780
0.4208 0.7 17500 0.4308 32.3714
0.4089 0.8 20000 0.4229 33.4109
0.4163 0.9 22500 0.4143 32.5423
0.3831 1.0 25000 0.4077 31.6951
0.3842 1.1 27500 0.4023 33.6316
0.3848 1.2 30000 0.3984 30.1099
0.3774 1.3 32500 0.3948 29.2864
0.3667 1.4 35000 0.3912 29.5166
0.3674 1.5 37500 0.3881 29.6115
0.3721 1.6 40000 0.3851 30.4065
0.3533 1.7 42500 0.3834 27.9693
0.3594 1.8 45000 0.3815 28.8569
0.3628 1.9 47500 0.3802 28.1260
0.3392 2.0 50000 0.3795 28.7264

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0
Downloads last month
26
Safetensors
Model size
41.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ibrahimj/hamsa-tiny-pretrained

Finetuned
(1)
this model

Evaluation results