Edit model card

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5496
  • Answer: {'precision': 0.875, 'recall': 0.9253365973072215, 'f1': 0.8994646044021416, 'number': 817}
  • Header: {'precision': 0.6276595744680851, 'recall': 0.4957983193277311, 'f1': 0.5539906103286385, 'number': 119}
  • Question: {'precision': 0.9049360146252285, 'recall': 0.9192200557103064, 'f1': 0.9120221096269001, 'number': 1077}
  • Overall Precision: 0.8796
  • Overall Recall: 0.8967
  • Overall F1: 0.8881
  • Overall Accuracy: 0.8134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.434 10.53 200 1.0227 {'precision': 0.8357705286839145, 'recall': 0.9094247246022031, 'f1': 0.8710433763188746, 'number': 817} {'precision': 0.7058823529411765, 'recall': 0.40336134453781514, 'f1': 0.5133689839572192, 'number': 119} {'precision': 0.8683522231909329, 'recall': 0.924791086350975, 'f1': 0.89568345323741, 'number': 1077} 0.8493 0.8877 0.8681 0.7935
0.0484 21.05 400 1.3626 {'precision': 0.8098360655737705, 'recall': 0.9069767441860465, 'f1': 0.8556581986143187, 'number': 817} {'precision': 0.6086956521739131, 'recall': 0.47058823529411764, 'f1': 0.5308056872037914, 'number': 119} {'precision': 0.8613333333333333, 'recall': 0.8997214484679665, 'f1': 0.8801089918256131, 'number': 1077} 0.8283 0.8773 0.8521 0.7995
0.0168 31.58 600 1.3003 {'precision': 0.8440046565774156, 'recall': 0.8873929008567931, 'f1': 0.8651551312649164, 'number': 817} {'precision': 0.6421052631578947, 'recall': 0.5126050420168067, 'f1': 0.5700934579439252, 'number': 119} {'precision': 0.8776595744680851, 'recall': 0.9192200557103064, 'f1': 0.8979591836734694, 'number': 1077} 0.8530 0.8823 0.8674 0.8189
0.008 42.11 800 1.3225 {'precision': 0.8584795321637427, 'recall': 0.8984088127294981, 'f1': 0.8779904306220095, 'number': 817} {'precision': 0.5736434108527132, 'recall': 0.6218487394957983, 'f1': 0.596774193548387, 'number': 119} {'precision': 0.888468809073724, 'recall': 0.872794800371402, 'f1': 0.8805620608899298, 'number': 1077} 0.8560 0.8684 0.8621 0.8210
0.0059 52.63 1000 1.6362 {'precision': 0.8307522123893806, 'recall': 0.9192166462668299, 'f1': 0.8727484020918072, 'number': 817} {'precision': 0.6419753086419753, 'recall': 0.4369747899159664, 'f1': 0.52, 'number': 119} {'precision': 0.8944444444444445, 'recall': 0.8969359331476323, 'f1': 0.8956884561891516, 'number': 1077} 0.8567 0.8788 0.8676 0.8061
0.0027 63.16 1200 1.6927 {'precision': 0.8269858541893362, 'recall': 0.9302325581395349, 'f1': 0.8755760368663594, 'number': 817} {'precision': 0.6046511627906976, 'recall': 0.4369747899159664, 'f1': 0.5073170731707317, 'number': 119} {'precision': 0.9000925069380203, 'recall': 0.903435468895079, 'f1': 0.901760889712697, 'number': 1077} 0.8557 0.8867 0.8709 0.7939
0.002 73.68 1400 1.4609 {'precision': 0.8479467258601554, 'recall': 0.9351285189718482, 'f1': 0.889406286379511, 'number': 817} {'precision': 0.5726495726495726, 'recall': 0.5630252100840336, 'f1': 0.5677966101694915, 'number': 119} {'precision': 0.8917431192660551, 'recall': 0.9025069637883009, 'f1': 0.8970927549607752, 'number': 1077} 0.8553 0.8957 0.8750 0.7965
0.0012 84.21 1600 1.4851 {'precision': 0.865909090909091, 'recall': 0.9326805385556916, 'f1': 0.8980553918680023, 'number': 817} {'precision': 0.6074766355140186, 'recall': 0.5462184873949579, 'f1': 0.575221238938053, 'number': 119} {'precision': 0.9008341056533827, 'recall': 0.9025069637883009, 'f1': 0.901669758812616, 'number': 1077} 0.8708 0.8937 0.8821 0.8131
0.0006 94.74 1800 1.5228 {'precision': 0.850613154960981, 'recall': 0.9339045287637698, 'f1': 0.8903150525087514, 'number': 817} {'precision': 0.594059405940594, 'recall': 0.5042016806722689, 'f1': 0.5454545454545453, 'number': 119} {'precision': 0.896709323583181, 'recall': 0.9108635097493036, 'f1': 0.9037309995393827, 'number': 1077} 0.8623 0.8962 0.8789 0.8082
0.0004 105.26 2000 1.5287 {'precision': 0.867579908675799, 'recall': 0.9302325581395349, 'f1': 0.8978145304193739, 'number': 817} {'precision': 0.6222222222222222, 'recall': 0.47058823529411764, 'f1': 0.5358851674641149, 'number': 119} {'precision': 0.8917710196779964, 'recall': 0.9257195914577531, 'f1': 0.9084282460136676, 'number': 1077} 0.8700 0.9006 0.8850 0.8128
0.0003 115.79 2200 1.5306 {'precision': 0.8766006984866124, 'recall': 0.9216646266829865, 'f1': 0.8985680190930787, 'number': 817} {'precision': 0.6263736263736264, 'recall': 0.4789915966386555, 'f1': 0.5428571428571428, 'number': 119} {'precision': 0.8902765388046388, 'recall': 0.9266480965645311, 'f1': 0.908098271155596, 'number': 1077} 0.8730 0.8982 0.8854 0.8127
0.0001 126.32 2400 1.5496 {'precision': 0.875, 'recall': 0.9253365973072215, 'f1': 0.8994646044021416, 'number': 817} {'precision': 0.6276595744680851, 'recall': 0.4957983193277311, 'f1': 0.5539906103286385, 'number': 119} {'precision': 0.9049360146252285, 'recall': 0.9192200557103064, 'f1': 0.9120221096269001, 'number': 1077} 0.8796 0.8967 0.8881 0.8134

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.