Edit model card

wav2vec2-base-finetuned-ic-slurp-no-pretrain

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1033
  • Accuracy: 0.3082

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8949 1.0 527 3.8954 0.0717
3.8006 2.0 1055 3.8025 0.0810
3.7439 3.0 1582 3.7616 0.0821
3.7199 4.0 2110 3.6873 0.0925
3.6145 5.0 2637 3.6367 0.0980
3.542 6.0 3165 3.5391 0.1161
3.3305 7.0 3692 3.3986 0.1528
3.171 8.0 4220 3.2162 0.2022
2.9197 9.0 4747 3.0826 0.2344
2.6468 10.0 5275 2.9709 0.2643
2.4813 11.0 5802 2.9282 0.2880
2.1928 12.0 6330 2.9192 0.2943
1.9368 13.0 6857 2.9719 0.2974
1.693 14.0 7385 3.0304 0.3021
1.3964 15.0 7912 3.1033 0.3082
1.3051 16.0 8440 3.2700 0.2945
1.0794 17.0 8967 3.4284 0.3033
0.9993 18.0 9495 3.5327 0.2998
0.7641 19.0 10022 3.6907 0.2978
0.68 20.0 10550 3.8579 0.2984

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/wav2vec2-base-finetuned-ic-slurp-no-pretrain

Finetuned
(652)
this model