Edit model card

las_asr-scr_w2v2-base_001

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5063
  • Per: 0.1385
  • Pcc: 0.7152
  • Ctc Loss: 0.4413
  • Mse Loss: 1.0747

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 1111
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 742
  • training_steps: 7420

Training results

Training Loss Epoch Step Validation Loss Per Pcc Ctc Loss Mse Loss
13.8511 1.0 742 4.6856 0.9897 0.6425 3.8063 1.0726
4.3974 2.0 1484 3.9341 0.9897 0.6978 3.3804 0.9671
2.3337 3.0 2226 1.9487 0.2101 0.7032 0.7264 1.1612
1.349 4.0 2968 1.9665 0.1870 0.7096 0.5798 1.2719
0.9566 5.0 3710 2.3409 0.1694 0.7104 0.5209 1.5863
0.618 6.0 4452 1.9887 0.1549 0.7153 0.4887 1.3187
0.3086 7.0 5194 1.4061 0.1520 0.7152 0.4632 0.9542
0.0495 8.0 5936 1.5966 0.1487 0.7123 0.4548 1.1008
-0.1576 9.0 6678 1.5246 0.1443 0.7182 0.4423 1.0794
-0.2832 10.0 7420 1.5063 0.1428 0.7167 0.4413 1.0747

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for excalibur12/las_asr-scr_w2v2-base_001

Finetuned
(651)
this model