distilbert-base-uncased_fold_6_binary_v1
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7209
- F1: 0.8156
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 290 | 0.4115 | 0.8048 |
0.3976 | 2.0 | 580 | 0.3980 | 0.8156 |
0.3976 | 3.0 | 870 | 0.5953 | 0.8142 |
0.1965 | 4.0 | 1160 | 0.7940 | 0.8057 |
0.1965 | 5.0 | 1450 | 0.8098 | 0.8069 |
0.0847 | 6.0 | 1740 | 1.0293 | 0.7913 |
0.03 | 7.0 | 2030 | 1.1649 | 0.8073 |
0.03 | 8.0 | 2320 | 1.2876 | 0.7973 |
0.0166 | 9.0 | 2610 | 1.3260 | 0.8038 |
0.0166 | 10.0 | 2900 | 1.3523 | 0.8084 |
0.0062 | 11.0 | 3190 | 1.3814 | 0.8097 |
0.0062 | 12.0 | 3480 | 1.4134 | 0.8165 |
0.0113 | 13.0 | 3770 | 1.5374 | 0.8068 |
0.006 | 14.0 | 4060 | 1.5808 | 0.8100 |
0.006 | 15.0 | 4350 | 1.6551 | 0.7972 |
0.0088 | 16.0 | 4640 | 1.5793 | 0.8116 |
0.0088 | 17.0 | 4930 | 1.6134 | 0.8143 |
0.0021 | 18.0 | 5220 | 1.6204 | 0.8119 |
0.0031 | 19.0 | 5510 | 1.7006 | 0.8029 |
0.0031 | 20.0 | 5800 | 1.6777 | 0.8145 |
0.0019 | 21.0 | 6090 | 1.7202 | 0.8079 |
0.0019 | 22.0 | 6380 | 1.7539 | 0.8053 |
0.0008 | 23.0 | 6670 | 1.7408 | 0.8119 |
0.0008 | 24.0 | 6960 | 1.7388 | 0.8176 |
0.0014 | 25.0 | 7250 | 1.7209 | 0.8156 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.