distilbert-base-uncased_fold_6_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7209
  • F1: 0.8156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 290 0.4115 0.8048
0.3976 2.0 580 0.3980 0.8156
0.3976 3.0 870 0.5953 0.8142
0.1965 4.0 1160 0.7940 0.8057
0.1965 5.0 1450 0.8098 0.8069
0.0847 6.0 1740 1.0293 0.7913
0.03 7.0 2030 1.1649 0.8073
0.03 8.0 2320 1.2876 0.7973
0.0166 9.0 2610 1.3260 0.8038
0.0166 10.0 2900 1.3523 0.8084
0.0062 11.0 3190 1.3814 0.8097
0.0062 12.0 3480 1.4134 0.8165
0.0113 13.0 3770 1.5374 0.8068
0.006 14.0 4060 1.5808 0.8100
0.006 15.0 4350 1.6551 0.7972
0.0088 16.0 4640 1.5793 0.8116
0.0088 17.0 4930 1.6134 0.8143
0.0021 18.0 5220 1.6204 0.8119
0.0031 19.0 5510 1.7006 0.8029
0.0031 20.0 5800 1.6777 0.8145
0.0019 21.0 6090 1.7202 0.8079
0.0019 22.0 6380 1.7539 0.8053
0.0008 23.0 6670 1.7408 0.8119
0.0008 24.0 6960 1.7388 0.8176
0.0014 25.0 7250 1.7209 0.8156

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.