20230826083203
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.2932
- Accuracy: 0.6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 25 | 0.5569 | 0.62 |
No log | 2.0 | 50 | 0.3272 | 0.4 |
No log | 3.0 | 75 | 0.2999 | 0.48 |
No log | 4.0 | 100 | 0.3037 | 0.58 |
No log | 5.0 | 125 | 0.3092 | 0.39 |
No log | 6.0 | 150 | 0.3147 | 0.37 |
No log | 7.0 | 175 | 0.2872 | 0.61 |
No log | 8.0 | 200 | 0.2897 | 0.68 |
No log | 9.0 | 225 | 0.2950 | 0.41 |
No log | 10.0 | 250 | 0.2779 | 0.63 |
No log | 11.0 | 275 | 0.2977 | 0.41 |
No log | 12.0 | 300 | 0.2909 | 0.59 |
No log | 13.0 | 325 | 0.2940 | 0.49 |
No log | 14.0 | 350 | 0.2929 | 0.49 |
No log | 15.0 | 375 | 0.2948 | 0.49 |
No log | 16.0 | 400 | 0.2935 | 0.57 |
No log | 17.0 | 425 | 0.2949 | 0.43 |
No log | 18.0 | 450 | 0.2925 | 0.59 |
No log | 19.0 | 475 | 0.2927 | 0.57 |
1.2287 | 20.0 | 500 | 0.2934 | 0.58 |
1.2287 | 21.0 | 525 | 0.2947 | 0.44 |
1.2287 | 22.0 | 550 | 0.2934 | 0.6 |
1.2287 | 23.0 | 575 | 0.2930 | 0.6 |
1.2287 | 24.0 | 600 | 0.2944 | 0.4 |
1.2287 | 25.0 | 625 | 0.2970 | 0.39 |
1.2287 | 26.0 | 650 | 0.2949 | 0.39 |
1.2287 | 27.0 | 675 | 0.2942 | 0.43 |
1.2287 | 28.0 | 700 | 0.2940 | 0.43 |
1.2287 | 29.0 | 725 | 0.2933 | 0.58 |
1.2287 | 30.0 | 750 | 0.2930 | 0.62 |
1.2287 | 31.0 | 775 | 0.2934 | 0.6 |
1.2287 | 32.0 | 800 | 0.2934 | 0.57 |
1.2287 | 33.0 | 825 | 0.2932 | 0.54 |
1.2287 | 34.0 | 850 | 0.2921 | 0.54 |
1.2287 | 35.0 | 875 | 0.2950 | 0.44 |
1.2287 | 36.0 | 900 | 0.2944 | 0.41 |
1.2287 | 37.0 | 925 | 0.2941 | 0.43 |
1.2287 | 38.0 | 950 | 0.2930 | 0.55 |
1.2287 | 39.0 | 975 | 0.2932 | 0.57 |
0.8805 | 40.0 | 1000 | 0.2923 | 0.57 |
0.8805 | 41.0 | 1025 | 0.2932 | 0.61 |
0.8805 | 42.0 | 1050 | 0.2936 | 0.46 |
0.8805 | 43.0 | 1075 | 0.2924 | 0.55 |
0.8805 | 44.0 | 1100 | 0.2937 | 0.44 |
0.8805 | 45.0 | 1125 | 0.2927 | 0.55 |
0.8805 | 46.0 | 1150 | 0.2923 | 0.56 |
0.8805 | 47.0 | 1175 | 0.2930 | 0.6 |
0.8805 | 48.0 | 1200 | 0.2936 | 0.43 |
0.8805 | 49.0 | 1225 | 0.2935 | 0.56 |
0.8805 | 50.0 | 1250 | 0.2937 | 0.46 |
0.8805 | 51.0 | 1275 | 0.2929 | 0.59 |
0.8805 | 52.0 | 1300 | 0.2932 | 0.55 |
0.8805 | 53.0 | 1325 | 0.2940 | 0.48 |
0.8805 | 54.0 | 1350 | 0.2933 | 0.53 |
0.8805 | 55.0 | 1375 | 0.2934 | 0.55 |
0.8805 | 56.0 | 1400 | 0.2936 | 0.49 |
0.8805 | 57.0 | 1425 | 0.2928 | 0.59 |
0.8805 | 58.0 | 1450 | 0.2927 | 0.53 |
0.8805 | 59.0 | 1475 | 0.2930 | 0.6 |
0.6612 | 60.0 | 1500 | 0.2936 | 0.47 |
0.6612 | 61.0 | 1525 | 0.2933 | 0.53 |
0.6612 | 62.0 | 1550 | 0.2932 | 0.62 |
0.6612 | 63.0 | 1575 | 0.2937 | 0.41 |
0.6612 | 64.0 | 1600 | 0.2932 | 0.54 |
0.6612 | 65.0 | 1625 | 0.2940 | 0.42 |
0.6612 | 66.0 | 1650 | 0.2931 | 0.56 |
0.6612 | 67.0 | 1675 | 0.2937 | 0.36 |
0.6612 | 68.0 | 1700 | 0.2930 | 0.63 |
0.6612 | 69.0 | 1725 | 0.2934 | 0.63 |
0.6612 | 70.0 | 1750 | 0.2937 | 0.36 |
0.6612 | 71.0 | 1775 | 0.2930 | 0.63 |
0.6612 | 72.0 | 1800 | 0.2932 | 0.63 |
0.6612 | 73.0 | 1825 | 0.2930 | 0.61 |
0.6612 | 74.0 | 1850 | 0.2932 | 0.53 |
0.6612 | 75.0 | 1875 | 0.2932 | 0.58 |
0.6612 | 76.0 | 1900 | 0.2935 | 0.53 |
0.6612 | 77.0 | 1925 | 0.2931 | 0.62 |
0.6612 | 78.0 | 1950 | 0.2933 | 0.54 |
0.6612 | 79.0 | 1975 | 0.2932 | 0.61 |
0.5295 | 80.0 | 2000 | 0.2932 | 0.6 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 0