Edit model card

roberta-base-finetuned-ner-cadec

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5558
  • Precision: 0.6407
  • Recall: 0.7089
  • F1: 0.6731
  • Accuracy: 0.9169
  • Adr Precision: 0.6127
  • Adr Recall: 0.725
  • Adr F1: 0.6641
  • Disease Precision: 0.2258
  • Disease Recall: 0.28
  • Disease F1: 0.25
  • Drug Precision: 0.9036
  • Drug Recall: 0.9259
  • Drug F1: 0.9146
  • Finding Precision: 0.4878
  • Finding Recall: 0.2899
  • Finding F1: 0.3636
  • Symptom Precision: 0.4828
  • Symptom Recall: 0.5185
  • Symptom F1: 0.5
  • B-adr Precision: 0.752
  • B-adr Recall: 0.8319
  • B-adr F1: 0.7899
  • B-disease Precision: 0.2414
  • B-disease Recall: 0.28
  • B-disease F1: 0.2593
  • B-drug Precision: 0.9458
  • B-drug Recall: 0.9691
  • B-drug F1: 0.9573
  • B-finding Precision: 0.5526
  • B-finding Recall: 0.3182
  • B-finding F1: 0.4038
  • B-symptom Precision: 0.64
  • B-symptom Recall: 0.5926
  • B-symptom F1: 0.6154
  • I-adr Precision: 0.5810
  • I-adr Recall: 0.6904
  • I-adr F1: 0.6310
  • I-disease Precision: 0.2308
  • I-disease Recall: 0.3
  • I-disease F1: 0.2609
  • I-drug Precision: 0.9146
  • I-drug Recall: 0.9317
  • I-drug F1: 0.9231
  • I-finding Precision: 0.6
  • I-finding Recall: 0.3529
  • I-finding F1: 0.4444
  • I-symptom Precision: 0.2353
  • I-symptom Recall: 0.3077
  • I-symptom F1: 0.2667
  • Macro Avg F1: 0.5552
  • Weighted Avg F1: 0.7224

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Adr Precision Adr Recall Adr F1 Disease Precision Disease Recall Disease F1 Drug Precision Drug Recall Drug F1 Finding Precision Finding Recall Finding F1 Symptom Precision Symptom Recall Symptom F1 B-adr Precision B-adr Recall B-adr F1 B-disease Precision B-disease Recall B-disease F1 B-drug Precision B-drug Recall B-drug F1 B-finding Precision B-finding Recall B-finding F1 B-symptom Precision B-symptom Recall B-symptom F1 I-adr Precision I-adr Recall I-adr F1 I-disease Precision I-disease Recall I-disease F1 I-drug Precision I-drug Recall I-drug F1 I-finding Precision I-finding Recall I-finding F1 I-symptom Precision I-symptom Recall I-symptom F1 Macro Avg F1 Weighted Avg F1
No log 1.0 125 0.3063 0.4838 0.5934 0.5331 0.8971 0.4278 0.6217 0.5068 0.0 0.0 0.0 0.8207 0.9321 0.8728 0.0 0.0 0.0 0.0 0.0 0.0 0.6483 0.7929 0.7134 0.0 0.0 0.0 0.8525 0.9630 0.9043 0.0 0.0 0.0 0.0 0.0 0.0 0.4127 0.5837 0.4835 0.0385 0.05 0.0435 0.8736 0.9441 0.9075 0.0 0.0 0.0 0.0 0.0 0.0 0.3052 0.5916
No log 2.0 250 0.2575 0.6006 0.6625 0.6300 0.9134 0.5618 0.705 0.6253 0.2188 0.28 0.2456 0.8639 0.9012 0.8822 0.4211 0.1159 0.1818 1.0 0.0370 0.0714 0.7417 0.7876 0.7639 0.2917 0.28 0.2857 0.9387 0.9444 0.9415 0.7778 0.2121 0.3333 1.0 0.0370 0.0714 0.5426 0.6925 0.6085 0.1852 0.25 0.2128 0.9146 0.9317 0.9231 0.625 0.0980 0.1695 0.0 0.0 0.0 0.4310 0.6809
No log 3.0 375 0.2649 0.5909 0.6738 0.6296 0.9113 0.5631 0.7067 0.6268 0.1633 0.32 0.2162 0.8876 0.9259 0.9063 0.2381 0.0725 0.1111 0.5333 0.2963 0.3810 0.7205 0.8442 0.7775 0.2222 0.32 0.2623 0.9226 0.9568 0.9394 0.5556 0.1515 0.2381 0.6667 0.2963 0.4103 0.5680 0.6987 0.6266 0.15 0.3 0.2 0.8988 0.9379 0.9179 0.6 0.1176 0.1967 0.25 0.0769 0.1176 0.4686 0.6937
0.2914 4.0 500 0.2610 0.6256 0.6852 0.6541 0.9170 0.6071 0.7083 0.6538 0.1887 0.4 0.2564 0.8988 0.9321 0.9152 0.2903 0.1304 0.18 0.6667 0.3704 0.4762 0.7558 0.8053 0.7798 0.2439 0.4 0.3030 0.9345 0.9691 0.9515 0.6087 0.2121 0.3146 0.75 0.3333 0.4615 0.5989 0.6715 0.6331 0.1556 0.35 0.2154 0.9042 0.9379 0.9207 0.5294 0.1765 0.2647 0.75 0.2308 0.3529 0.5197 0.7071
0.2914 5.0 625 0.2837 0.6264 0.6988 0.6606 0.9130 0.5970 0.7283 0.6562 0.2424 0.32 0.2759 0.8713 0.9198 0.8949 0.375 0.1739 0.2376 0.6471 0.4074 0.5 0.7543 0.8478 0.7983 0.2727 0.36 0.3103 0.9345 0.9691 0.9515 0.5833 0.2121 0.3111 0.8462 0.4074 0.5500 0.5777 0.7155 0.6393 0.25 0.25 0.25 0.8817 0.9255 0.9030 0.4348 0.1961 0.2703 0.4444 0.3077 0.3636 0.5347 0.7161
0.2914 6.0 750 0.3233 0.6175 0.6636 0.6397 0.9097 0.6171 0.685 0.6493 0.1636 0.36 0.2250 0.8982 0.9259 0.9119 0.1739 0.0580 0.0870 0.3158 0.4444 0.3692 0.7746 0.8212 0.7973 0.2174 0.4 0.2817 0.9341 0.9630 0.9483 0.6364 0.1061 0.1818 0.5185 0.5185 0.5185 0.5888 0.6799 0.6311 0.1538 0.3 0.2034 0.9091 0.9317 0.9202 0.4118 0.1373 0.2059 0.2308 0.4615 0.3077 0.4996 0.7050
0.2914 7.0 875 0.3260 0.6226 0.6988 0.6585 0.9119 0.5917 0.71 0.6455 0.25 0.28 0.2642 0.8876 0.9259 0.9063 0.5 0.2899 0.3670 0.4118 0.5185 0.4590 0.7449 0.8372 0.7883 0.2593 0.28 0.2692 0.9290 0.9691 0.9486 0.5556 0.3030 0.3922 0.6154 0.5926 0.6038 0.5714 0.6946 0.6270 0.2381 0.25 0.2439 0.8982 0.9317 0.9146 0.5806 0.3529 0.4390 0.3158 0.4615 0.3750 0.5602 0.7188
0.093 8.0 1000 0.3299 0.6452 0.7044 0.6735 0.9172 0.6186 0.7083 0.6605 0.2308 0.24 0.2353 0.9207 0.9321 0.9264 0.4464 0.3623 0.4 0.4839 0.5556 0.5172 0.7685 0.8106 0.7890 0.2308 0.24 0.2353 0.9512 0.9630 0.9571 0.5581 0.3636 0.4404 0.68 0.6296 0.6538 0.5914 0.6904 0.6371 0.2941 0.25 0.2703 0.9207 0.9379 0.9292 0.5 0.4314 0.4632 0.3158 0.4615 0.3750 0.5750 0.7280
0.093 9.0 1125 0.3947 0.6289 0.6852 0.6558 0.9132 0.5940 0.695 0.6406 0.2381 0.4 0.2985 0.9096 0.9321 0.9207 0.6154 0.2319 0.3368 0.4231 0.4074 0.4151 0.7377 0.8212 0.7772 0.2564 0.4 0.3125 0.9458 0.9691 0.9573 0.6667 0.2424 0.3556 0.6364 0.5185 0.5714 0.5692 0.6883 0.6231 0.2 0.3 0.24 0.9152 0.9379 0.9264 0.6818 0.2941 0.4110 0.2 0.2308 0.2143 0.5389 0.7120
0.093 10.0 1250 0.3795 0.6303 0.6874 0.6576 0.9164 0.5952 0.6983 0.6426 0.25 0.36 0.2951 0.9042 0.9321 0.9179 0.4667 0.2029 0.2828 0.5385 0.5185 0.5283 0.7414 0.8372 0.7864 0.2812 0.36 0.3158 0.9515 0.9691 0.9602 0.6296 0.2576 0.3656 0.7 0.5185 0.5957 0.5836 0.6862 0.6308 0.2222 0.3 0.2553 0.9096 0.9379 0.9235 0.5652 0.2549 0.3514 0.4286 0.4615 0.4444 0.5629 0.7187
0.093 11.0 1375 0.3702 0.6401 0.6908 0.6645 0.9182 0.6106 0.69 0.6479 0.25 0.28 0.2642 0.9042 0.9321 0.9179 0.5366 0.3188 0.4000 0.4103 0.5926 0.4848 0.7733 0.8212 0.7966 0.25 0.28 0.2642 0.9398 0.9630 0.9512 0.6562 0.3182 0.4286 0.5484 0.6296 0.5862 0.5862 0.6757 0.6278 0.3333 0.3 0.3158 0.9042 0.9379 0.9207 0.6286 0.4314 0.5116 0.2 0.3846 0.2632 0.5666 0.7264
0.0444 12.0 1500 0.3848 0.6375 0.6931 0.6641 0.9193 0.6009 0.695 0.6445 0.2333 0.28 0.2545 0.9152 0.9321 0.9235 0.5455 0.3478 0.4248 0.4815 0.4815 0.4815 0.7488 0.8336 0.7889 0.2333 0.28 0.2545 0.9512 0.9630 0.9571 0.6316 0.3636 0.4615 0.65 0.4815 0.5532 0.5901 0.6715 0.6282 0.2174 0.25 0.2326 0.9152 0.9379 0.9264 0.5429 0.3725 0.4419 0.4667 0.5385 0.5 0.5744 0.7243
0.0444 13.0 1625 0.3970 0.6441 0.7010 0.6714 0.9202 0.6109 0.7117 0.6574 0.2222 0.24 0.2308 0.9136 0.9136 0.9136 0.5455 0.3478 0.4248 0.4828 0.5185 0.5 0.7582 0.8159 0.7860 0.28 0.28 0.28 0.9568 0.9568 0.9568 0.6154 0.3636 0.4571 0.56 0.5185 0.5385 0.5829 0.6841 0.6295 0.2381 0.25 0.2439 0.925 0.9193 0.9221 0.6111 0.4314 0.5057 0.2667 0.3077 0.2857 0.5605 0.7236
0.0444 14.0 1750 0.3962 0.6576 0.7112 0.6834 0.9203 0.6310 0.7267 0.6754 0.2059 0.28 0.2373 0.9268 0.9383 0.9325 0.4390 0.2609 0.3273 0.6 0.5556 0.5769 0.7545 0.8212 0.7864 0.2188 0.28 0.2456 0.9512 0.9630 0.9571 0.5588 0.2879 0.3800 0.6818 0.5556 0.6122 0.6018 0.6987 0.6467 0.2143 0.3 0.25 0.9268 0.9441 0.9354 0.5312 0.3333 0.4096 0.4167 0.3846 0.4 0.5623 0.7257
0.0444 15.0 1875 0.4322 0.6351 0.6920 0.6623 0.9153 0.6173 0.7017 0.6568 0.2121 0.28 0.2414 0.9091 0.9259 0.9174 0.425 0.2464 0.3119 0.3810 0.5926 0.4638 0.7598 0.8230 0.7901 0.2258 0.28 0.25 0.9512 0.9630 0.9571 0.5625 0.2727 0.3673 0.5806 0.6667 0.6207 0.6015 0.6883 0.6420 0.24 0.3 0.2667 0.9091 0.9317 0.9202 0.5455 0.3529 0.4286 0.2222 0.4615 0.3 0.5543 0.7237
0.023 16.0 2000 0.4250 0.6621 0.7055 0.6831 0.9211 0.6243 0.7117 0.6651 0.2414 0.28 0.2593 0.9264 0.9321 0.9292 0.5526 0.3043 0.3925 0.6296 0.6296 0.6296 0.7659 0.8106 0.7876 0.25 0.28 0.2642 0.9571 0.9630 0.9600 0.625 0.3030 0.4082 0.64 0.5926 0.6154 0.5861 0.6904 0.6340 0.2609 0.3 0.2791 0.9264 0.9379 0.9321 0.6562 0.4118 0.5060 0.4167 0.3846 0.4 0.5787 0.7273
0.023 17.0 2125 0.4284 0.6499 0.7044 0.6761 0.9195 0.6210 0.71 0.6625 0.2 0.24 0.2182 0.9152 0.9321 0.9235 0.5476 0.3333 0.4144 0.4706 0.5926 0.5246 0.7553 0.8248 0.7885 0.2414 0.28 0.2593 0.9512 0.9630 0.9571 0.6216 0.3485 0.4466 0.5333 0.5926 0.5614 0.6059 0.6820 0.6417 0.2174 0.25 0.2326 0.9207 0.9379 0.9292 0.6364 0.4118 0.5 0.2632 0.3846 0.3125 0.5629 0.7285
0.023 18.0 2250 0.4274 0.6494 0.6942 0.6710 0.9200 0.6129 0.6967 0.6521 0.2727 0.24 0.2553 0.9146 0.9259 0.9202 0.4808 0.3623 0.4132 0.5833 0.5185 0.5490 0.7615 0.8195 0.7894 0.2727 0.24 0.2553 0.9565 0.9506 0.9536 0.5435 0.3788 0.4464 0.6667 0.5185 0.5833 0.5845 0.6799 0.6286 0.2778 0.25 0.2632 0.9259 0.9317 0.9288 0.5 0.4314 0.4632 0.3571 0.3846 0.3704 0.5682 0.7244
0.023 19.0 2375 0.4651 0.6393 0.6965 0.6667 0.9166 0.5969 0.6983 0.6436 0.25 0.24 0.2449 0.9152 0.9321 0.9235 0.5111 0.3333 0.4035 0.6154 0.5926 0.6038 0.7545 0.8106 0.7816 0.2727 0.24 0.2553 0.9573 0.9691 0.9632 0.6216 0.3485 0.4466 0.6818 0.5556 0.6122 0.5767 0.6925 0.6293 0.2632 0.25 0.2564 0.9207 0.9379 0.9292 0.5833 0.4118 0.4828 0.3333 0.3846 0.3571 0.5714 0.7237
0.0136 20.0 2500 0.4697 0.6439 0.7044 0.6728 0.9171 0.61 0.7117 0.6569 0.2143 0.24 0.2264 0.9146 0.9259 0.9202 0.5106 0.3478 0.4138 0.5556 0.5556 0.5556 0.7404 0.8230 0.7795 0.25 0.24 0.2449 0.9512 0.9630 0.9571 0.6429 0.4091 0.5000 0.6522 0.5556 0.6 0.5833 0.6883 0.6315 0.2273 0.25 0.2381 0.9146 0.9317 0.9231 0.5882 0.3922 0.4706 0.3333 0.3846 0.3571 0.5702 0.7236
0.0136 21.0 2625 0.5053 0.6301 0.7022 0.6642 0.9132 0.6037 0.7133 0.6539 0.2 0.24 0.2182 0.8830 0.9321 0.9069 0.4565 0.3043 0.3652 0.5 0.5185 0.5091 0.7424 0.8265 0.7822 0.2222 0.24 0.2308 0.9240 0.9753 0.9489 0.5 0.3333 0.4 0.625 0.5556 0.5882 0.5814 0.6946 0.6330 0.2 0.25 0.2222 0.8988 0.9379 0.9179 0.5758 0.3725 0.4524 0.2353 0.3077 0.2667 0.5442 0.7175
0.0136 22.0 2750 0.4975 0.6310 0.6954 0.6616 0.9114 0.5980 0.7067 0.6478 0.2 0.24 0.2182 0.9085 0.9198 0.9141 0.4565 0.3043 0.3652 0.5833 0.5185 0.5490 0.7389 0.8212 0.7779 0.2308 0.24 0.2353 0.9512 0.9630 0.9571 0.5610 0.3485 0.4299 0.6818 0.5556 0.6122 0.5679 0.6820 0.6198 0.2174 0.25 0.2326 0.9141 0.9255 0.9198 0.5588 0.3725 0.4471 0.2857 0.3077 0.2963 0.5528 0.7149
0.0136 23.0 2875 0.4871 0.6399 0.6942 0.6659 0.9175 0.6089 0.7083 0.6549 0.2143 0.24 0.2264 0.9030 0.9198 0.9113 0.5 0.2899 0.3670 0.4815 0.4815 0.4815 0.7607 0.8159 0.7874 0.2692 0.28 0.2745 0.9512 0.9630 0.9571 0.6471 0.3333 0.44 0.6087 0.5185 0.5600 0.5825 0.6946 0.6336 0.2273 0.25 0.2381 0.9030 0.9255 0.9141 0.5938 0.3725 0.4578 0.25 0.3077 0.2759 0.5538 0.7224
0.0085 24.0 3000 0.4869 0.6528 0.7112 0.6808 0.9202 0.6211 0.7267 0.6697 0.2069 0.24 0.2222 0.9259 0.9259 0.9259 0.5238 0.3188 0.3964 0.5185 0.5185 0.5185 0.7565 0.8301 0.7916 0.2222 0.24 0.2308 0.9630 0.9630 0.9630 0.6053 0.3485 0.4423 0.6667 0.5926 0.6275 0.5972 0.7071 0.6475 0.2083 0.25 0.2273 0.9259 0.9317 0.9288 0.6129 0.3725 0.4634 0.2667 0.3077 0.2857 0.5608 0.7309
0.0085 25.0 3125 0.4876 0.6488 0.6988 0.6728 0.9183 0.6106 0.7083 0.6559 0.2143 0.24 0.2264 0.9202 0.9259 0.9231 0.5405 0.2899 0.3774 0.5926 0.5926 0.5926 0.7667 0.8142 0.7897 0.2308 0.24 0.2353 0.9689 0.9630 0.9659 0.6 0.3182 0.4158 0.64 0.5926 0.6154 0.5813 0.7029 0.6364 0.2174 0.25 0.2326 0.9202 0.9317 0.9259 0.6071 0.3333 0.4304 0.3571 0.3846 0.3704 0.5618 0.7253
0.0085 26.0 3250 0.4933 0.6365 0.6999 0.6667 0.9174 0.6065 0.7167 0.6570 0.2069 0.24 0.2222 0.9202 0.9259 0.9231 0.4865 0.2609 0.3396 0.4242 0.5185 0.4667 0.7528 0.8248 0.7872 0.2222 0.24 0.2308 0.9571 0.9630 0.9600 0.5806 0.2727 0.3711 0.5714 0.5926 0.5818 0.5846 0.7008 0.6375 0.2083 0.25 0.2273 0.9202 0.9317 0.9259 0.6 0.3529 0.4444 0.3158 0.4615 0.3750 0.5541 0.7220
0.0085 27.0 3375 0.5263 0.6470 0.7078 0.6760 0.9200 0.6090 0.7217 0.6606 0.2692 0.28 0.2745 0.9141 0.9198 0.9169 0.5128 0.2899 0.3704 0.5926 0.5926 0.5926 0.7465 0.8389 0.7900 0.28 0.28 0.28 0.9571 0.9630 0.9600 0.6286 0.3333 0.4356 0.625 0.5556 0.5882 0.5982 0.6946 0.6428 0.2857 0.3 0.2927 0.9141 0.9255 0.9198 0.6333 0.3725 0.4691 0.3846 0.3846 0.3846 0.5763 0.7293
0.0053 28.0 3500 0.5326 0.6454 0.7112 0.6767 0.9194 0.6124 0.7267 0.6646 0.2333 0.28 0.2545 0.9085 0.9198 0.9141 0.5405 0.2899 0.3774 0.5333 0.5926 0.5614 0.7504 0.8354 0.7906 0.2414 0.28 0.2593 0.9512 0.9630 0.9571 0.6061 0.3030 0.4040 0.6154 0.5926 0.6038 0.5922 0.6987 0.6411 0.24 0.3 0.2667 0.9085 0.9255 0.9169 0.6429 0.3529 0.4557 0.3333 0.3846 0.3571 0.5652 0.7261
0.0053 29.0 3625 0.5403 0.6517 0.7055 0.6775 0.9169 0.6189 0.72 0.6656 0.2333 0.28 0.2545 0.9085 0.9198 0.9141 0.5263 0.2899 0.3738 0.5769 0.5556 0.5660 0.7569 0.8265 0.7902 0.25 0.28 0.2642 0.9512 0.9630 0.9571 0.6 0.3182 0.4158 0.6522 0.5556 0.6 0.5921 0.6925 0.6384 0.2308 0.3 0.2609 0.9141 0.9255 0.9198 0.6 0.3529 0.4444 0.3333 0.3846 0.3571 0.5648 0.7254
0.0053 30.0 3750 0.5468 0.6520 0.7214 0.6849 0.9163 0.6227 0.74 0.6763 0.2258 0.28 0.25 0.9146 0.9259 0.9202 0.4878 0.2899 0.3636 0.5714 0.5926 0.5818 0.7544 0.8372 0.7936 0.2414 0.28 0.2593 0.9512 0.9630 0.9571 0.5385 0.3182 0.4000 0.6667 0.5926 0.6275 0.5937 0.7092 0.6463 0.2308 0.3 0.2609 0.9202 0.9317 0.9259 0.6207 0.3529 0.4500 0.3125 0.3846 0.3448 0.5665 0.7295
0.0053 31.0 3875 0.5451 0.6409 0.7135 0.6752 0.9175 0.6078 0.7283 0.6626 0.2258 0.28 0.25 0.9146 0.9259 0.9202 0.4878 0.2899 0.3636 0.5714 0.5926 0.5818 0.7480 0.8354 0.7893 0.25 0.28 0.2642 0.9512 0.9630 0.9571 0.5676 0.3182 0.4078 0.64 0.5926 0.6154 0.5807 0.6925 0.6317 0.2222 0.3 0.2553 0.9202 0.9317 0.9259 0.5625 0.3529 0.4337 0.3333 0.3846 0.3571 0.5637 0.7232
0.0035 32.0 4000 0.5502 0.6471 0.7123 0.6782 0.9182 0.6172 0.7283 0.6682 0.2258 0.28 0.25 0.9141 0.9198 0.9169 0.4878 0.2899 0.3636 0.5517 0.5926 0.5714 0.7540 0.8301 0.7902 0.25 0.28 0.2642 0.9571 0.9630 0.9600 0.6 0.3182 0.4158 0.64 0.5926 0.6154 0.5901 0.6987 0.6398 0.2308 0.3 0.2609 0.9141 0.9255 0.9198 0.5938 0.3725 0.4578 0.3125 0.3846 0.3448 0.5669 0.7268
0.0035 33.0 4125 0.5468 0.6451 0.7101 0.6760 0.9183 0.6147 0.7233 0.6646 0.2333 0.28 0.2545 0.9036 0.9259 0.9146 0.5128 0.2899 0.3704 0.5161 0.5926 0.5517 0.7565 0.8301 0.7916 0.25 0.28 0.2642 0.9458 0.9691 0.9573 0.6 0.3182 0.4158 0.64 0.5926 0.6154 0.5861 0.6904 0.6340 0.2308 0.3 0.2609 0.9146 0.9317 0.9231 0.6 0.3529 0.4444 0.3684 0.5385 0.4375 0.5744 0.7259
0.0035 34.0 4250 0.5503 0.6379 0.7044 0.6695 0.9174 0.6070 0.7183 0.6580 0.2258 0.28 0.25 0.9036 0.9259 0.9146 0.5128 0.2899 0.3704 0.4828 0.5185 0.5 0.7528 0.8301 0.7896 0.2414 0.28 0.2593 0.9458 0.9691 0.9573 0.5833 0.3182 0.4118 0.64 0.5926 0.6154 0.5792 0.6883 0.6291 0.2308 0.3 0.2609 0.9146 0.9317 0.9231 0.6 0.3529 0.4444 0.2353 0.3077 0.2667 0.5557 0.7220
0.0035 35.0 4375 0.5558 0.6407 0.7089 0.6731 0.9169 0.6127 0.725 0.6641 0.2258 0.28 0.25 0.9036 0.9259 0.9146 0.4878 0.2899 0.3636 0.4828 0.5185 0.5 0.752 0.8319 0.7899 0.2414 0.28 0.2593 0.9458 0.9691 0.9573 0.5526 0.3182 0.4038 0.64 0.5926 0.6154 0.5810 0.6904 0.6310 0.2308 0.3 0.2609 0.9146 0.9317 0.9231 0.6 0.3529 0.4444 0.2353 0.3077 0.2667 0.5552 0.7224

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
12
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csNoHug/roberta-base-finetuned-ner-cadec

Finetuned
(1281)
this model