Edit model card

10_epochs_camembert_jb

This model is a fine-tuned version of Jean-Baptiste/camembert-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1070
  • Overall Precision: 0.8279
  • Overall Recall: 0.8660
  • Overall F1: 0.8465
  • Overall Accuracy: 0.9803
  • Er F1: 0.8617
  • Oc F1: 0.8347
  • Umanprod F1: 0.7297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Er F1 Oc F1 Umanprod F1
0.2805 1.0 613 0.0797 0.7802 0.7990 0.7895 0.9749 0.8187 0.7677 0.4231
0.072 2.0 1226 0.0790 0.8060 0.8392 0.8223 0.9773 0.8458 0.8050 0.5574
0.0511 3.0 1839 0.0807 0.8139 0.8623 0.8374 0.9789 0.8583 0.8200 0.6933
0.0354 4.0 2452 0.0808 0.8097 0.8574 0.8329 0.9793 0.8589 0.8115 0.6667
0.0198 5.0 3065 0.0940 0.7936 0.8591 0.8250 0.9781 0.8426 0.8124 0.6835
0.0165 6.0 3678 0.0988 0.8350 0.8542 0.8445 0.9802 0.8656 0.8297 0.6486
0.0126 7.0 4291 0.0990 0.8292 0.8692 0.8488 0.9805 0.8682 0.8340 0.6849
0.0103 8.0 4904 0.1042 0.8246 0.8666 0.8450 0.9803 0.8630 0.8331 0.6575
0.0076 9.0 5517 0.1066 0.8195 0.8687 0.8434 0.9801 0.8593 0.8305 0.7297
0.0066 10.0 6130 0.1070 0.8279 0.8660 0.8465 0.9803 0.8617 0.8347 0.7297

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cpu
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.