lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5526
  • Answer: {'precision': 0.8434684684684685, 'recall': 0.9167686658506732, 'f1': 0.8785923753665689, 'number': 817}
  • Header: {'precision': 0.6494845360824743, 'recall': 0.5294117647058824, 'f1': 0.5833333333333334, 'number': 119}
  • Question: {'precision': 0.8929219600725953, 'recall': 0.9136490250696379, 'f1': 0.9031665901789812, 'number': 1077}
  • Overall Precision: 0.8606
  • Overall Recall: 0.8922
  • Overall F1: 0.8761
  • Overall Accuracy: 0.7988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1122 10.53 200 0.3663 {'precision': 0.7907488986784141, 'recall': 0.8788249694002448, 'f1': 0.832463768115942, 'number': 817} {'precision': 0.4888888888888889, 'recall': 0.5546218487394958, 'f1': 0.5196850393700787, 'number': 119} {'precision': 0.8885630498533724, 'recall': 0.8440111420612814, 'f1': 0.8657142857142858, 'number': 1077} 0.8195 0.8410 0.8301 0.7813
0.0121 21.05 400 0.3856 {'precision': 0.8256880733944955, 'recall': 0.8812729498164015, 'f1': 0.8525754884547069, 'number': 817} {'precision': 0.6021505376344086, 'recall': 0.47058823529411764, 'f1': 0.5283018867924528, 'number': 119} {'precision': 0.8739946380697051, 'recall': 0.9080779944289693, 'f1': 0.8907103825136613, 'number': 1077} 0.8417 0.8713 0.8562 0.8060
0.0038 31.58 600 0.4187 {'precision': 0.8352534562211982, 'recall': 0.8873929008567931, 'f1': 0.8605341246290802, 'number': 817} {'precision': 0.59, 'recall': 0.4957983193277311, 'f1': 0.5388127853881278, 'number': 119} {'precision': 0.8956197576887233, 'recall': 0.8922934076137419, 'f1': 0.8939534883720931, 'number': 1077} 0.8550 0.8669 0.8609 0.8082
0.0018 42.11 800 0.4984 {'precision': 0.8299319727891157, 'recall': 0.8959608323133414, 'f1': 0.8616833431430253, 'number': 817} {'precision': 0.6111111111111112, 'recall': 0.46218487394957986, 'f1': 0.5263157894736842, 'number': 119} {'precision': 0.8860055607043559, 'recall': 0.8876508820798514, 'f1': 0.8868274582560296, 'number': 1077} 0.8498 0.8659 0.8578 0.7950
0.0015 52.63 1000 0.4974 {'precision': 0.830316742081448, 'recall': 0.8984088127294981, 'f1': 0.8630217519106408, 'number': 817} {'precision': 0.6161616161616161, 'recall': 0.5126050420168067, 'f1': 0.5596330275229358, 'number': 119} {'precision': 0.9015151515151515, 'recall': 0.8839368616527391, 'f1': 0.8926394749179559, 'number': 1077} 0.8568 0.8679 0.8623 0.7888
0.0012 63.16 1200 0.5089 {'precision': 0.8566473988439306, 'recall': 0.9069767441860465, 'f1': 0.8810939357907253, 'number': 817} {'precision': 0.5981308411214953, 'recall': 0.5378151260504201, 'f1': 0.5663716814159291, 'number': 119} {'precision': 0.9059590316573557, 'recall': 0.903435468895079, 'f1': 0.904695490469549, 'number': 1077} 0.8690 0.8833 0.8761 0.8067
0.0006 73.68 1400 0.5012 {'precision': 0.8409090909090909, 'recall': 0.9057527539779682, 'f1': 0.8721272834413673, 'number': 817} {'precision': 0.6043956043956044, 'recall': 0.46218487394957986, 'f1': 0.5238095238095237, 'number': 119} {'precision': 0.8840182648401826, 'recall': 0.8987929433611885, 'f1': 0.8913443830570903, 'number': 1077} 0.8533 0.8758 0.8644 0.7997
0.0003 84.21 1600 0.5316 {'precision': 0.8506944444444444, 'recall': 0.8996328029375765, 'f1': 0.874479476502082, 'number': 817} {'precision': 0.5775862068965517, 'recall': 0.5630252100840336, 'f1': 0.5702127659574467, 'number': 119} {'precision': 0.8932481751824818, 'recall': 0.9090064995357474, 'f1': 0.9010584445467096, 'number': 1077} 0.8579 0.8847 0.8711 0.8003
0.0002 94.74 1800 0.5347 {'precision': 0.8617401668653158, 'recall': 0.8849449204406364, 'f1': 0.8731884057971013, 'number': 817} {'precision': 0.5317460317460317, 'recall': 0.5630252100840336, 'f1': 0.5469387755102041, 'number': 119} {'precision': 0.8999081726354453, 'recall': 0.9099350046425255, 'f1': 0.9048938134810711, 'number': 1077} 0.8617 0.8793 0.8704 0.7979
0.0002 105.26 2000 0.5526 {'precision': 0.8434684684684685, 'recall': 0.9167686658506732, 'f1': 0.8785923753665689, 'number': 817} {'precision': 0.6494845360824743, 'recall': 0.5294117647058824, 'f1': 0.5833333333333334, 'number': 119} {'precision': 0.8929219600725953, 'recall': 0.9136490250696379, 'f1': 0.9031665901789812, 'number': 1077} 0.8606 0.8922 0.8761 0.7988
0.0001 115.79 2200 0.5488 {'precision': 0.8368953880764904, 'recall': 0.9106487148102815, 'f1': 0.8722157092614302, 'number': 817} {'precision': 0.5833333333333334, 'recall': 0.5294117647058824, 'f1': 0.5550660792951542, 'number': 119} {'precision': 0.8835740072202166, 'recall': 0.9090064995357474, 'f1': 0.8961098398169337, 'number': 1077} 0.8485 0.8872 0.8674 0.8017
0.0001 126.32 2400 0.5510 {'precision': 0.8372615039281706, 'recall': 0.9130966952264382, 'f1': 0.8735362997658079, 'number': 817} {'precision': 0.6074766355140186, 'recall': 0.5462184873949579, 'f1': 0.575221238938053, 'number': 119} {'precision': 0.895264116575592, 'recall': 0.9127205199628597, 'f1': 0.9039080459770115, 'number': 1077} 0.8559 0.8912 0.8732 0.8024

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.9.0
  • Tokenizers 0.14.1
Downloads last month
16
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arrietafernando/lilt-en-funsd

Finetuned
(45)
this model