Edit model card

wav2vec2-large-xls-r-300m-mr

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5479
  • Wer: 0.5740

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Wer
3.7378 18.18 400 3.5047 1.0
3.1707 36.36 800 2.6166 0.9912
1.4942 54.55 1200 0.5778 0.6927
1.2058 72.73 1600 0.5168 0.6362
1.0558 90.91 2000 0.5105 0.6069
0.9488 109.09 2400 0.5151 0.6089
0.8588 127.27 2800 0.5157 0.5989
0.7991 145.45 3200 0.5179 0.5740
0.7545 163.64 3600 0.5348 0.5740
0.7144 181.82 4000 0.5518 0.5724
0.7041 200.0 4400 0.5479 0.5740

Framework versions

  • Transformers 4.16.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.1
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "या पानास लेखाचे स्वरूप यायला हावे"

Eval results on Common Voice 8 "test" (WER):

Without LM With LM (run ./eval.py)
49.177 32.811
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anuragshas/wav2vec2-large-xls-r-300m-mr

Evaluation results