xlm-roberta-large-finetuned-ner

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1297
  • Precision: 0.9233
  • Recall: 0.9608
  • F1: 0.9416
  • Accuracy: 0.9764

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2578 1.0 1167 0.1724 0.8145 0.8758 0.8440 0.9436
0.1792 2.0 2334 0.1305 0.8636 0.9089 0.8857 0.9603
0.1224 3.0 3501 0.1390 0.8714 0.9398 0.9043 0.9617
0.0894 4.0 4668 0.1201 0.8856 0.9444 0.9140 0.9646
0.0731 5.0 5835 0.1264 0.8848 0.9497 0.9161 0.9696
0.0597 6.0 7002 0.1247 0.9231 0.9516 0.9371 0.9751
0.044 7.0 8169 0.1141 0.9177 0.9468 0.9320 0.9749
0.0373 8.0 9336 0.1235 0.9126 0.9597 0.9355 0.9739
0.024 9.0 10503 0.1286 0.9226 0.9578 0.9399 0.9762
0.0209 10.0 11670 0.1297 0.9233 0.9608 0.9416 0.9764

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
559M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for alexbeta80/xlm-roberta-large-finetuned-ner

Adapter
(22)
this model