Edit model card

xlmroberta2xlmroberta-finetune-summarization-ar

This model is a fine-tuned version of on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1298
  • Rouge-1: 21.69
  • Rouge-2: 8.73
  • Rouge-l: 19.52
  • Gen Len: 19.96
  • Bertscore: 71.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Rouge-1 Rouge-2 Rouge-l Gen Len Bertscore
8.0645 1.0 1172 7.3567 8.22 0.66 7.94 20.0 58.18
7.2042 2.0 2344 6.6058 12.12 2.19 11.4 20.0 63.24
6.4168 3.0 3516 5.8784 16.46 4.31 15.15 20.0 66.3
5.4622 4.0 4688 4.7931 17.6 5.87 15.9 19.99 69.21
4.7829 5.0 5860 4.4418 19.17 6.74 17.22 19.98 70.23
4.4829 6.0 7032 4.2950 19.8 7.11 17.74 19.98 70.38
4.304 7.0 8204 4.2155 20.71 7.59 18.56 19.98 70.66
4.1778 8.0 9376 4.1632 21.1 7.94 18.99 19.98 70.86
4.0886 9.0 10548 4.1346 21.44 8.03 19.28 19.98 70.93
4.0294 10.0 11720 4.1298 21.51 8.14 19.33 19.98 71.02

Framework versions

  • Transformers 4.19.4
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using ahmeddbahaa/xlmroberta2xlmroberta-finetune-summarization-ar 1