Edit model card

Model description

entity-recognition-general-sota-v1-finetuned-ner

This model is a fine-tuned version of numind/entity-recognition-general-sota-v1 on Babelscape/MultiNerd dataset.

It achieves the following results on the validation set:

  • Loss: 0.0396
  • Precision: 0.9138
  • Recall: 0.9146
  • F1: 0.9142
  • Accuracy: 0.9857

Training and evaluation data

The dataset if filtered on english language and sampled first 1M on train and 100k on validation. further filtered with data containing atleast one tag from labels2ids mentioned below. Training data - 131280 items Validation data - 16410 items

Trained on all tags from the MultiNERD dataset.

labels2ids = { "O": 0, "B-PER": 1, "I-PER": 2, "B-ORG": 3, "I-ORG": 4, "B-LOC": 5, "I-LOC": 6, "B-ANIM": 7, "I-ANIM": 8, "B-BIO": 9, "I-BIO": 10, "B-CEL": 11, "I-CEL": 12, "B-DIS": 13, "I-DIS": 14, "B-EVE": 15, "I-EVE": 16, "B-FOOD": 17, "I-FOOD": 18, "B-INST": 19, "I-INST": 20, "B-MEDIA": 21, "I-MEDIA": 22, "B-MYTH": 23, "I-MYTH": 24, "B-PLANT": 25, "I-PLANT": 26, "B-TIME": 27, "I-TIME": 28, "B-VEHI": 29, "I-VEHI": 30, }

Training procedure

HF Trainer module

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training & Test set evaluation results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0323 1.0 6564 0.0396 0.9138 0.9146 0.9142 0.9857

Evaluation on test set: {'eval_loss': 0.02707073651254177, 'eval_precision': 0.9378337879893957, 'eval_recall': 0.9518034704620784, 'eval_f1': 0.9447669917943954, 'eval_accuracy': 0.9901678553418342, 'eval_runtime': 133.0665, 'eval_samples_per_second': 247.305, 'eval_steps_per_second': 30.917}

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Saketh/entity-recognition-general-sota-v1-finetuned-ner

Base model

numind/NuNER-v0.1
Finetuned
(4)
this model

Dataset used to train Saketh/entity-recognition-general-sota-v1-finetuned-ner