segformer-b0-finetuned-breastcancer-oct-22
This model is a fine-tuned version of nvidia/mit-b0 on the as-cle-bert/breastcancer-semantic-segmentation dataset. It achieves the following results on the evaluation set:
- Loss: 1.2330
- Mean Iou: 0.3012
- Mean Accuracy: 0.5964
- Overall Accuracy: 0.8331
- Accuracy Background: nan
- Accuracy Benign Breast Cancer: 0.1308
- Accuracy Malignant Breast Cancer: 0.8042
- Accuracy Ignore: 0.8543
- Iou Background: 0.0
- Iou Benign Breast Cancer: 0.0749
- Iou Malignant Breast Cancer: 0.2943
- Iou Ignore: 0.8356
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Benign Breast Cancer | Accuracy Malignant Breast Cancer | Accuracy Ignore | Iou Background | Iou Benign Breast Cancer | Iou Malignant Breast Cancer | Iou Ignore |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1649 | 0.625 | 10 | 1.2330 | 0.3012 | 0.5964 | 0.8331 | nan | 0.1308 | 0.8042 | 0.8543 | 0.0 | 0.0749 | 0.2943 | 0.8356 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cpu
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for PushkarA07/segformer-b0-finetuned-breastcancer-oct-22
Base model
nvidia/mit-b0