Edit model card

results

This model is a fine-tuned version of google/flan-t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 16
  • training_steps: 1698

Training results

Training Loss Epoch Step Validation Loss
3.2568 0.59 50 2.9764
3.2186 1.18 100 2.9349
3.1884 1.76 150 2.8820
3.1448 2.35 200 2.8404
3.1166 2.94 250 2.8120
3.0742 3.53 300 2.7899
3.0662 4.12 350 2.7724
3.0379 4.71 400 2.7578
3.0301 5.29 450 2.7457
3.0071 5.88 500 2.7352
3.0084 6.47 550 2.7259
2.9632 7.06 600 2.7177
2.9706 7.65 650 2.7104
2.9543 8.24 700 2.7037
2.9573 8.82 750 2.6979
2.9663 9.41 800 2.6928
2.9243 10.0 850 2.6877
2.9451 10.59 900 2.6832
2.9027 11.18 950 2.6790
2.9255 11.76 1000 2.6754
2.916 12.35 1050 2.6719
2.9155 12.94 1100 2.6688
2.9223 13.53 1150 2.6659
2.9141 14.12 1200 2.6635
2.8931 14.71 1250 2.6612
2.8988 15.29 1300 2.6590
2.8986 15.88 1350 2.6573
2.8998 16.47 1400 2.6558
2.9004 17.06 1450 2.6546
2.9036 17.65 1500 2.6535
2.885 18.24 1550 2.6528
2.8994 18.82 1600 2.6522
2.8971 19.41 1650 2.6519

Framework versions

  • PEFT 0.8.2
  • Transformers 4.38.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Orcawise/eu_ai_act_using_base_t5

Adapter
(128)
this model