lilt-roberta-DocLayNet-base_lines_ml256-v1

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9004
  • Precision: 0.8622
  • Recall: 0.8622
  • F1: 0.8622
  • Accuracy: 0.8622

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.07 300 0.7371 0.6945 0.6945 0.6945 0.6945
0.7701 0.14 600 0.8573 0.7488 0.7488 0.7488 0.7488
0.7701 0.21 900 0.7687 0.7606 0.7606 0.7606 0.7606
0.471 0.27 1200 0.7057 0.7750 0.7750 0.7750 0.7750
0.4183 0.34 1500 0.6305 0.7961 0.7961 0.7961 0.7961
0.4183 0.41 1800 0.7039 0.7769 0.7769 0.7769 0.7769
0.3683 0.48 2100 0.5956 0.7980 0.7980 0.7980 0.7980
0.3683 0.55 2400 0.7312 0.7864 0.7864 0.7864 0.7864
0.3429 0.62 2700 0.5868 0.8049 0.8049 0.8049 0.8049
0.3337 0.69 3000 0.5911 0.8010 0.8010 0.8010 0.8010
0.3337 0.76 3300 0.7278 0.7893 0.7893 0.7893 0.7893
0.3056 0.82 3600 0.8030 0.7908 0.7908 0.7908 0.7908
0.3056 0.89 3900 0.6587 0.7978 0.7978 0.7978 0.7978
0.2772 0.96 4200 0.5334 0.8315 0.8315 0.8315 0.8315
0.2456 1.03 4500 0.6787 0.7992 0.7992 0.7992 0.7992
0.2456 1.1 4800 0.7325 0.8037 0.8037 0.8037 0.8037
0.2183 1.17 5100 0.7280 0.7985 0.7985 0.7985 0.7985
0.2183 1.24 5400 0.9041 0.7787 0.7787 0.7787 0.7787
0.2288 1.31 5700 0.7504 0.8076 0.8076 0.8076 0.8076
0.2228 1.37 6000 0.6672 0.8042 0.8042 0.8042 0.8042
0.2228 1.44 6300 0.5468 0.8511 0.8511 0.8511 0.8511
0.1989 1.51 6600 0.5928 0.8229 0.8229 0.8229 0.8229
0.1989 1.58 6900 0.6731 0.8150 0.8150 0.8150 0.8150
0.2062 1.65 7200 0.7504 0.8030 0.8030 0.8030 0.8030
0.1971 1.72 7500 0.6554 0.8255 0.8255 0.8255 0.8255
0.1971 1.79 7800 0.7095 0.8046 0.8046 0.8046 0.8046
0.1929 1.86 8100 0.6244 0.8397 0.8397 0.8397 0.8397
0.1929 1.92 8400 0.8521 0.8067 0.8067 0.8067 0.8067
0.1788 1.99 8700 0.7261 0.8088 0.8088 0.8088 0.8088
0.1631 2.06 9000 0.6650 0.8272 0.8272 0.8272 0.8272
0.1631 2.13 9300 0.8314 0.8142 0.8142 0.8142 0.8142
0.1284 2.2 9600 0.9010 0.8113 0.8113 0.8113 0.8113
0.1284 2.27 9900 0.9008 0.8087 0.8087 0.8087 0.8087
0.1248 2.34 10200 0.9152 0.8065 0.8065 0.8065 0.8065
0.1365 2.4 10500 0.6791 0.8393 0.8393 0.8393 0.8393
0.1365 2.47 10800 0.7301 0.8185 0.8185 0.8185 0.8185
0.1194 2.54 11100 0.8937 0.8050 0.8050 0.8050 0.8050
0.1194 2.61 11400 0.7559 0.8293 0.8293 0.8293 0.8293
0.1282 2.68 11700 0.7903 0.8163 0.8163 0.8163 0.8163
0.1234 2.75 12000 1.0103 0.8090 0.8090 0.8090 0.8090
0.1234 2.82 12300 0.9975 0.8096 0.8096 0.8096 0.8096
0.1104 2.89 12600 0.8443 0.8171 0.8171 0.8171 0.8171
0.1104 2.95 12900 0.8380 0.8125 0.8125 0.8125 0.8125
0.1254 3.02 13200 0.8283 0.8223 0.8223 0.8223 0.8223
0.0806 3.09 13500 0.9232 0.8323 0.8323 0.8323 0.8323
0.0806 3.16 13800 1.0903 0.8176 0.8176 0.8176 0.8176
0.0875 3.23 14100 1.0781 0.8110 0.8110 0.8110 0.8110
0.0875 3.3 14400 0.8806 0.8277 0.8277 0.8277 0.8277
0.0817 3.37 14700 1.0024 0.8212 0.8212 0.8212 0.8212
0.085 3.44 15000 0.9078 0.8294 0.8294 0.8294 0.8294
0.085 3.5 15300 0.8745 0.8377 0.8377 0.8377 0.8377
0.0784 3.57 15600 0.9590 0.8329 0.8329 0.8329 0.8329
0.0784 3.64 15900 0.8027 0.8500 0.8500 0.8500 0.8500
0.0785 3.71 16200 1.0033 0.8171 0.8171 0.8171 0.8171
0.0756 3.78 16500 0.8017 0.8446 0.8446 0.8446 0.8446
0.0756 3.85 16800 1.0721 0.8162 0.8162 0.8162 0.8162
0.078 3.92 17100 1.1095 0.8172 0.8172 0.8172 0.8172
0.078 3.99 17400 1.0099 0.8200 0.8200 0.8200 0.8200
0.0696 4.05 17700 1.0189 0.8249 0.8249 0.8249 0.8249
0.0456 4.12 18000 1.2109 0.8165 0.8165 0.8165 0.8165
0.0456 4.19 18300 1.0789 0.8273 0.8273 0.8273 0.8273
0.0587 4.26 18600 1.0981 0.8277 0.8277 0.8277 0.8277
0.0587 4.33 18900 1.0236 0.8395 0.8395 0.8395 0.8395
0.0485 4.4 19200 0.9660 0.8381 0.8381 0.8381 0.8381
0.056 4.47 19500 0.9447 0.8453 0.8453 0.8453 0.8453
0.056 4.54 19800 0.9226 0.8564 0.8564 0.8564 0.8564
0.0517 4.6 20100 1.1416 0.8313 0.8313 0.8313 0.8313
0.0517 4.67 20400 0.9004 0.8622 0.8622 0.8622 0.8622
0.0555 4.74 20700 1.0452 0.8416 0.8416 0.8416 0.8416
0.0578 4.81 21000 0.9997 0.8480 0.8480 0.8480 0.8480
0.0578 4.88 21300 1.0441 0.8402 0.8402 0.8402 0.8402
0.0495 4.95 21600 1.0393 0.8421 0.8421 0.8421 0.8421

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0
Downloads last month
28
Safetensors
Model size
284M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NiamaLynn/lilt-roberta-DocLayNet-base_lines_ml256-v1

Finetuned
(29)
this model

Space using NiamaLynn/lilt-roberta-DocLayNet-base_lines_ml256-v1 1