Edit model card

scream_duodevicesimus_working_noaudiobooks_7e5_v2

This model is a fine-tuned version of openai/whisper-small on the NbAiLab/ncc_speech dataset. It achieves the following results on the evaluation set:

  • step: 19999
  • validation_fleurs_loss: 0.3089
  • train_loss: 0.7173
  • validation_fleurs_wer: 8.2391
  • validation_fleurs_cer: 3.7039
  • validation_fleurs_exact_wer: 12.6643
  • validation_fleurs_exact_cer: 4.6485
  • validation_stortinget_loss: 0.2845
  • validation_stortinget_wer: 13.9625
  • validation_stortinget_cer: 10.0306
  • validation_stortinget_exact_wer: 17.2389
  • validation_stortinget_exact_cer: 10.5844
  • validation_nrk_tv_loss: 0.7447
  • validation_nrk_tv_wer: 40.1880
  • validation_nrk_tv_cer: 31.3161
  • validation_nrk_tv_exact_wer: 47.6494
  • validation_nrk_tv_exact_cer: 32.4497

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • lr_scheduler_type: linear
  • per_device_train_batch_size: 32
  • total_train_batch_size_per_node: 128
  • total_train_batch_size: 1024
  • total_optimization_steps: 20,000
  • starting_optimization_step: None
  • finishing_optimization_step: 20,000
  • num_train_dataset_workers: 32
  • num_hosts: 8
  • total_num_training_examples: 20,480,000
  • steps_per_epoch: 11275
  • num_beams: 5
  • dropout: True
  • bpe_dropout_probability: 0.1
  • activation_dropout_probability: 0.1

Training results

step validation_fleurs_loss train_loss validation_fleurs_wer validation_fleurs_cer validation_fleurs_exact_wer validation_fleurs_exact_cer validation_stortinget_loss validation_stortinget_wer validation_stortinget_cer validation_stortinget_exact_wer validation_stortinget_exact_cer validation_nrk_tv_loss validation_nrk_tv_wer validation_nrk_tv_cer validation_nrk_tv_exact_wer validation_nrk_tv_exact_cer
0 1.3211 3.0189 110.1725 80.3659 196.8041 131.4230 1.5012 76.6096 51.2561 82.1890 54.4126 1.8187 259.8656 217.2117 269.5665 222.7746
1000 0.6977 1.1353 13.4444 4.3105 17.5926 5.2863 0.4717 21.7105 13.9604 25.3783 14.6687 0.9934 86.4845 70.4142 93.7677 73.6462
2000 0.3926 0.8912 10.5889 3.7088 14.7849 4.6968 0.3930 18.7212 12.5960 22.2213 13.2354 0.8926 49.9691 39.8385 57.6635 41.2514
3000 0.3620 0.8106 10.7674 4.3007 15.0836 5.2573 0.3632 17.5019 11.9674 21.0430 12.5977 0.8606 44.9157 34.5510 52.6419 35.8510
4000 0.3363 0.8043 10.3807 3.8518 14.0980 4.7886 0.3443 16.1694 11.2786 19.6917 11.8983 0.8431 44.9487 34.0425 52.5379 35.4061
5000 0.3060 0.7682 9.6074 3.6694 13.8590 4.5808 0.3329 16.0903 11.1667 19.5724 11.7732 0.8154 45.4598 35.0224 52.7292 36.3997
6000 0.3477 0.7510 9.2207 3.5510 13.3214 4.5083 0.3246 15.9711 11.2829 19.4232 11.8775 0.8097 43.0897 33.1321 50.5325 34.3331
7000 0.3152 0.7608 9.6074 4.1034 13.7395 5.0834 0.3217 15.1188 10.6651 18.5510 11.2540 0.7959 42.0139 32.2852 49.4716 33.4915
8000 0.3232 0.7680 9.8453 3.9258 13.7993 4.8128 0.3161 15.1877 10.7202 18.5356 11.2959 0.7938 42.1829 32.6832 49.6256 34.2256
9000 0.3376 0.7386 8.9827 3.4967 12.8734 4.4262 0.3082 14.8650 10.5644 18.2372 11.1377 0.7793 41.7501 32.6252 49.4924 33.8756
10000 0.3152 0.7408 9.0422 3.7335 13.5006 4.6678 0.3068 14.7458 10.4670 18.1324 11.0457 0.7773 41.3750 31.9683 49.1887 33.1957
11000 0.3167 0.7246 9.2802 3.7976 13.2318 4.7354 0.3010 14.4811 10.3391 17.8357 10.9036 0.7745 41.2926 31.8771 48.8018 33.0807
12000 0.3087 0.7240 8.7745 3.6447 12.7838 4.5712 0.2996 14.2912 10.2057 17.6353 10.7722 0.7683 41.1525 32.0549 48.8018 33.2402
13000 0.3330 0.7061 8.3284 3.5362 12.4851 4.4552 0.2981 14.3397 10.2971 17.7257 10.8680 0.7642 41.1401 32.0379 48.7685 33.1949
14000 0.3176 0.6887 8.8935 3.7680 12.8734 4.6726 0.2940 14.1728 10.2323 17.5270 10.8029 0.7618 39.9942 30.7597 47.3873 31.9470
15000 0.3113 0.7296 8.7151 3.8617 13.0526 4.8224 0.2924 14.0962 10.1638 17.4495 10.7350 0.7595 40.2951 31.0757 47.7201 32.2502
16000 0.3058 0.6820 9.2802 4.0688 13.2019 4.9481 0.2922 14.0766 10.1057 17.4222 10.6784 0.7544 40.4641 31.5116 47.9947 32.7092
17000 0.3030 0.7120 8.9233 3.8913 13.0824 4.8321 0.2878 14.1413 10.1954 17.4785 10.7684 0.7559 40.3487 31.4791 48.0113 32.6455
18000 0.3080 0.6951 8.5961 3.7138 12.5747 4.6533 0.2863 13.8595 9.9432 17.1562 10.5007 0.7467 40.0437 31.2512 47.5745 32.4163
19000 0.3104 0.6771 8.5961 3.6743 12.7838 4.6050 0.2854 13.9702 10.0538 17.2858 10.6153 0.7477 40.2003 31.3663 47.6743 32.5098
19999 0.3089 0.7173 8.2391 3.7039 12.6643 4.6485
19999 0.2845 0.7173 13.9625 10.0306 17.2389 10.5844
19999 0.7447 0.7173 40.1880 31.3161 47.6494 32.4497

Framework versions

  • Transformers 4.31.0.dev0
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.