gttbsc_phi-freezed-best

Ground truth text based multi-label DAC

Model description

Backbone: Phi 3 mini
Pooling: Weighted mean pooling
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween

Training and evaluation data

Trained on ground truth.
Evaluated on ground truth (GT) and normalized Whisper small transcripts (E2E).

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
2.37M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Masioki/gttbsc_phi-freezed-best

Evaluation results