gttbsc_distilbert-ft

Ground truth text multi-label DAC.
Fined tuned using LoRa.

Model description

Backbone: DistilBert uncased
Pooling: Self attention
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween

Training and evaluation data

Trained on ground truth.
Evaluated on ground truth (GT) and normalized Whisper small transcripts (E2E).

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00043
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
39
Safetensors
Model size
67.2M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train Masioki/gttbsc_distilbert-ft

Evaluation results