wav2vec2-xlsr-greek-speech-emotion-recognition

This model is a fine-tuned version of lighteternal/wav2vec2-large-xlsr-53-greek on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1800
  • Accuracy: 0.3833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9021 0.3030 10 1.8892 0.2000
1.8885 0.6061 20 1.6402 0.2167
1.754 0.9091 30 1.6901 0.2000
1.6619 1.2121 40 1.5932 0.2167
1.652 1.5152 50 1.5049 0.3000
1.4988 1.8182 60 1.6048 0.2667
1.4969 2.1212 70 1.3770 0.3500
1.4804 2.4242 80 1.5712 0.2000
1.4504 2.7273 90 1.7242 0.2667
1.4986 3.0303 100 1.3580 0.4000
1.3599 3.3333 110 1.3808 0.2833
1.2302 3.6364 120 1.3788 0.3000
1.2667 3.9394 130 1.3989 0.3167
1.1758 4.2424 140 1.3644 0.3167
1.2662 4.5455 150 1.2385 0.3000
1.1174 4.8485 160 1.1787 0.3333
1.1285 5.1515 170 1.2276 0.3500
1.2251 5.4545 180 1.1819 0.3667
1.1332 5.7576 190 1.1800 0.3833

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
316M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for MajaHjuler/wav2vec2-xlsr-greek-speech-emotion-recognition

Finetuned
(2)
this model