Edit model card

STT_Model_17

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1172
  • Wer: 0.1190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer
4.1934 2.1 500 3.7998 0.9999
1.14 4.2 1000 0.4083 0.3740
0.2217 6.3 1500 0.2515 0.2184
0.1276 8.4 2000 0.1623 0.1803
0.0914 10.5 2500 0.1586 0.1672
0.0731 12.61 3000 0.1648 0.1583
0.0572 14.71 3500 0.4059 0.1534
0.054 16.81 4000 0.1694 0.1391
0.043 18.91 4500 0.1390 0.1439
0.035 21.01 5000 0.1210 0.1362
0.0317 23.11 5500 0.1389 0.1285
0.031 25.21 6000 0.1340 0.1316
0.0266 27.31 6500 0.1312 0.1280
0.0209 29.41 7000 0.1484 0.1256
0.0184 31.51 7500 0.1345 0.1289
0.0201 33.61 8000 0.1350 0.1248
0.026 35.71 8500 0.1226 0.1235
0.016 37.82 9000 0.1235 0.1232
0.0115 39.92 9500 0.1223 0.1216
0.013 42.02 10000 0.1314 0.1206
0.0225 44.12 10500 0.1158 0.1211
0.011 46.22 11000 0.1181 0.1203
0.0106 48.32 11500 0.1172 0.1190

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.