ViT_bloodmnist_std_0
This model is a fine-tuned version of google/vit-base-patch16-224 on the medmnist-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1010
- Accuracy: 0.9690
- F1: 0.9644
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.3571 | 0.0595 | 200 | 0.1183 | 0.9597 | 0.9577 |
0.1349 | 0.1189 | 400 | 0.1324 | 0.9568 | 0.9521 |
0.093 | 0.1784 | 600 | 0.1167 | 0.9609 | 0.9587 |
0.0777 | 0.2378 | 800 | 0.0855 | 0.9755 | 0.9715 |
0.0559 | 0.2973 | 1000 | 0.1004 | 0.9667 | 0.9649 |
0.0473 | 0.3567 | 1200 | 0.1123 | 0.9696 | 0.9668 |
0.0395 | 0.4162 | 1400 | 0.1074 | 0.9690 | 0.9676 |
0.0338 | 0.4756 | 1600 | 0.1189 | 0.9632 | 0.9608 |
0.027 | 0.5351 | 1800 | 0.1097 | 0.9772 | 0.9755 |
0.0176 | 0.5945 | 2000 | 0.0958 | 0.9784 | 0.9766 |
0.0105 | 0.6540 | 2200 | 0.1423 | 0.9720 | 0.9692 |
0.0161 | 0.7134 | 2400 | 0.1725 | 0.9650 | 0.9625 |
0.0113 | 0.7729 | 2600 | 0.1278 | 0.9708 | 0.9675 |
0.0077 | 0.8323 | 2800 | 0.1132 | 0.9766 | 0.9743 |
0.0078 | 0.8918 | 3000 | 0.1646 | 0.9690 | 0.9679 |
0.007 | 0.9512 | 3200 | 0.1128 | 0.9737 | 0.9718 |
0.0036 | 1.0107 | 3400 | 0.1489 | 0.9725 | 0.9735 |
0.0047 | 1.0702 | 3600 | 0.1232 | 0.9796 | 0.9787 |
0.0158 | 1.1296 | 3800 | 0.1597 | 0.9673 | 0.9615 |
0.0082 | 1.1891 | 4000 | 0.1633 | 0.9731 | 0.9731 |
0.0029 | 1.2485 | 4200 | 0.1312 | 0.9784 | 0.9770 |
0.0029 | 1.3080 | 4400 | 0.1311 | 0.9778 | 0.9760 |
0.0005 | 1.3674 | 4600 | 0.1121 | 0.9825 | 0.9818 |
0.0039 | 1.4269 | 4800 | 0.2170 | 0.9626 | 0.9587 |
0.0097 | 1.4863 | 5000 | 0.1750 | 0.9690 | 0.9693 |
0.0065 | 1.5458 | 5200 | 0.1327 | 0.9778 | 0.9768 |
0.0047 | 1.6052 | 5400 | 0.1401 | 0.9761 | 0.9744 |
0.0035 | 1.6647 | 5600 | 0.1273 | 0.9801 | 0.9803 |
0.0001 | 1.7241 | 5800 | 0.1269 | 0.9784 | 0.9777 |
0.0 | 1.7836 | 6000 | 0.1601 | 0.9737 | 0.9723 |
0.0 | 1.8430 | 6200 | 0.1328 | 0.9772 | 0.9765 |
0.0 | 1.9025 | 6400 | 0.1326 | 0.9772 | 0.9765 |
0.0 | 1.9620 | 6600 | 0.1333 | 0.9772 | 0.9765 |
0.0022 | 2.0214 | 6800 | 0.1839 | 0.9755 | 0.9749 |
0.0008 | 2.0809 | 7000 | 0.1914 | 0.9702 | 0.9683 |
0.0008 | 2.1403 | 7200 | 0.1954 | 0.9731 | 0.9725 |
0.0008 | 2.1998 | 7400 | 0.1592 | 0.9743 | 0.9737 |
0.0 | 2.2592 | 7600 | 0.1653 | 0.9755 | 0.9750 |
0.0 | 2.3187 | 7800 | 0.1649 | 0.9749 | 0.9747 |
0.0 | 2.3781 | 8000 | 0.1654 | 0.9755 | 0.9756 |
0.0 | 2.4376 | 8200 | 0.1646 | 0.9755 | 0.9756 |
0.0 | 2.4970 | 8400 | 0.1643 | 0.9755 | 0.9756 |
0.0 | 2.5565 | 8600 | 0.1713 | 0.9749 | 0.9747 |
0.0 | 2.6159 | 8800 | 0.1698 | 0.9755 | 0.9756 |
0.0 | 2.6754 | 9000 | 0.1698 | 0.9755 | 0.9756 |
0.0 | 2.7348 | 9200 | 0.1696 | 0.9755 | 0.9756 |
0.0 | 2.7943 | 9400 | 0.1696 | 0.9755 | 0.9756 |
0.0 | 2.8537 | 9600 | 0.1696 | 0.9755 | 0.9756 |
0.0 | 2.9132 | 9800 | 0.1697 | 0.9755 | 0.9756 |
0.0 | 2.9727 | 10000 | 0.1698 | 0.9755 | 0.9756 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 195
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for KiViDrag/ViT_bloodmnist_std_0
Base model
google/vit-base-patch16-224Evaluation results
- Accuracy on medmnist-v2validation set self-reported0.969
- F1 on medmnist-v2validation set self-reported0.964