cnn_news_summary_model_trained_on_reduced_data

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5909
  • Rouge1: 0.2179
  • Rouge2: 0.0947
  • Rougel: 0.1841
  • Rougelsum: 0.1841
  • Generated Length: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Generated Length
No log 1.0 431 1.6028 0.2178 0.0946 0.1837 0.1837 19.0
1.8071 2.0 862 1.5929 0.2172 0.0946 0.1835 0.1836 19.0
1.7953 3.0 1293 1.5909 0.2179 0.0947 0.1841 0.1841 19.0

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
111
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Kacharuk/cnn_news_summary_model_trained_on_reduced_data

Base model

google-t5/t5-small
Finetuned
(1709)
this model