gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-44

This model is a fine-tuned version of Alibaba-NLP/gte-large-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2193
  • F1: 0.9463

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
0.4603 0.2527 100 0.2243 0.9083
0.2014 0.5054 200 0.1719 0.9377
0.1679 0.7581 300 0.1354 0.9486
0.1497 1.0107 400 0.1174 0.9543
0.1062 1.2634 500 0.1451 0.9490
0.1117 1.5161 600 0.1379 0.9504
0.1156 1.7688 700 0.1235 0.9533
0.1155 2.0215 800 0.1305 0.9562
0.0784 2.2742 900 0.1372 0.9530
0.0898 2.5268 1000 0.1204 0.9585
0.0904 2.7795 1100 0.1864 0.9294
0.0936 3.0322 1200 0.1731 0.9543
0.0644 3.2849 1300 0.1482 0.95
0.0668 3.5376 1400 0.1713 0.9455
0.0648 3.7903 1500 0.1499 0.9551
0.0605 4.0430 1600 0.2150 0.9506
0.0468 4.2956 1700 0.1913 0.9453
0.0531 4.5483 1800 0.2022 0.9421
0.0564 4.8010 1900 0.1694 0.9544
0.0568 5.0537 2000 0.2193 0.9463

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
10
Safetensors
Model size
435M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for J1N2/gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-44

Finetuned
(14)
this model