RoBERTa_Combined_Generated_v1.1_epoch_8
This model is a fine-tuned version of ICT2214Team7/RoBERTa_Test_Training on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0076
- Precision: 0.9219
- Recall: 0.8872
- F1: 0.9042
- Accuracy: 0.9971
- Report: {'PER': {'precision': 0.921875, 'recall': 0.8872180451127819, 'f1-score': 0.9042145593869733, 'support': 133}, 'micro avg': {'precision': 0.921875, 'recall': 0.8872180451127819, 'f1-score': 0.9042145593869733, 'support': 133}, 'macro avg': {'precision': 0.921875, 'recall': 0.8872180451127819, 'f1-score': 0.9042145593869733, 'support': 133}, 'weighted avg': {'precision': 0.921875, 'recall': 0.8872180451127819, 'f1-score': 0.9042145593869733, 'support': 133}}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Report |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 200 | 0.0087 | 0.8562 | 0.9398 | 0.8961 | 0.9967 | {'PER': {'precision': 0.8561643835616438, 'recall': 0.9398496240601504, 'f1-score': 0.8960573476702508, 'support': 133}, 'micro avg': {'precision': 0.8561643835616438, 'recall': 0.9398496240601504, 'f1-score': 0.8960573476702508, 'support': 133}, 'macro avg': {'precision': 0.8561643835616438, 'recall': 0.9398496240601504, 'f1-score': 0.8960573476702508, 'support': 133}, 'weighted avg': {'precision': 0.8561643835616438, 'recall': 0.9398496240601504, 'f1-score': 0.8960573476702508, 'support': 133}} |
No log | 2.0 | 400 | 0.0072 | 0.9111 | 0.9248 | 0.9179 | 0.9973 | {'PER': {'precision': 0.9111111111111111, 'recall': 0.924812030075188, 'f1-score': 0.917910447761194, 'support': 133}, 'micro avg': {'precision': 0.9111111111111111, 'recall': 0.924812030075188, 'f1-score': 0.917910447761194, 'support': 133}, 'macro avg': {'precision': 0.9111111111111111, 'recall': 0.924812030075188, 'f1-score': 0.917910447761194, 'support': 133}, 'weighted avg': {'precision': 0.9111111111111111, 'recall': 0.924812030075188, 'f1-score': 0.917910447761194, 'support': 133}} |
0.0267 | 3.0 | 600 | 0.0076 | 0.9219 | 0.8872 | 0.9042 | 0.9971 | {'PER': {'precision': 0.921875, 'recall': 0.8872180451127819, 'f1-score': 0.9042145593869733, 'support': 133}, 'micro avg': {'precision': 0.921875, 'recall': 0.8872180451127819, 'f1-score': 0.9042145593869733, 'support': 133}, 'macro avg': {'precision': 0.921875, 'recall': 0.8872180451127819, 'f1-score': 0.9042145593869733, 'support': 133}, 'weighted avg': {'precision': 0.921875, 'recall': 0.8872180451127819, 'f1-score': 0.9042145593869733, 'support': 133}} |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 38
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ICT2214Team7/RoBERTa_Combined_Generated_v1.1_epoch_8
Base model
distilbert/distilroberta-base
Finetuned
ICT2214Team7/RoBERTa_Test_Training