Edit model card

deeepfake-audio-Recognition-ttoo

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2288
  • Accuracy: 0.9545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6417 1.0 33 0.5774 0.7879
0.4818 2.0 66 0.3792 0.8485
0.2756 3.0 99 0.3066 0.8788
0.3106 4.0 132 0.1951 0.9545
0.2138 5.0 165 0.2078 0.9394
0.0988 6.0 198 0.3227 0.9091
0.1043 7.0 231 0.2893 0.9394
0.0808 8.0 264 0.2177 0.9545
0.1312 9.0 297 0.2846 0.9091
0.0667 10.0 330 0.1955 0.9545
0.0513 11.0 363 0.2553 0.9545
0.0217 12.0 396 0.1708 0.9545
0.0136 13.0 429 0.1641 0.9545
0.0236 14.0 462 0.2203 0.9545
0.0097 15.0 495 0.2253 0.9545
0.003 16.0 528 0.2288 0.9545

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
11
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hemg/deeepfake-audio-Recognition-ttoo

Finetuned
(631)
this model

Evaluation results