textsum4

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6082
  • Rouge1: 0.1814
  • Rouge2: 0.117
  • Rougel: 0.1747
  • Rougelsum: 0.1745
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.9328 1.0 911 1.6082 0.1814 0.117 0.1747 0.1745 19.0

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.2+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
5
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Hanisnabila/textsum4

Base model

google-t5/t5-small
Finetuned
(1761)
this model