10k-finetune
This model is a fine-tuned version of MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3357
- Accuracy: 0.8730
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4093 | 0.33 | 20 | 0.4616 | 0.8115 |
0.2952 | 0.66 | 40 | 0.3984 | 0.8238 |
0.2775 | 0.99 | 60 | 0.3357 | 0.8730 |
0.1836 | 1.32 | 80 | 0.3674 | 0.8402 |
0.1772 | 1.65 | 100 | 0.3687 | 0.8361 |
0.1502 | 1.98 | 120 | 0.3730 | 0.8443 |
0.1245 | 2.31 | 140 | 0.3966 | 0.8402 |
0.1226 | 2.64 | 160 | 0.3719 | 0.8566 |
0.1166 | 2.98 | 180 | 0.3768 | 0.8484 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.