YAML Metadata Error: "model-index" must be an array

This model achieves WER on common-voice ro test split of WER: 12.457178%

wav2vec2-xls-r-300m-romanian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an common voice ro and RSS dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.0836
  • eval_wer: 0.0705
  • eval_runtime: 160.4549
  • eval_samples_per_second: 11.081
  • eval_steps_per_second: 1.39
  • epoch: 14.38
  • step: 2703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.13.3
  • Tokenizers 0.10.3

Used the following code for evaluation:

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "ro", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian")
model = Wav2Vec2ForCTC.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian")
model.to("cuda")

chars_to_ignore_regex = '['+string.punctuation+']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Credits for evaluation: https://huggingface.co/anton-l

Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results

Model card error

This model's model-index metadata is invalid: Schema validation error. "model-index" must be an array