interpro_bert3

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4142

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 200
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 1600
  • total_eval_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
1.2045 1.0 18425 1.1198
0.8936 2.0 36850 0.8563
0.7736 3.0 55275 0.7475
0.6946 4.0 73700 0.6877
0.8083 5.0 92125 0.7509
0.677 6.0 110550 0.6578
0.778 7.0 128975 0.7306
0.6017 8.0 147400 0.5994
0.5646 9.0 165825 0.5704
0.5352 10.0 184250 0.5479
0.532 11.0 202675 0.5496
0.495 12.0 221100 0.5198
0.4714 13.0 239525 0.4971
0.4497 14.0 257950 0.4797
0.4312 15.0 276375 0.4670
0.4131 16.0 294800 0.4494
0.4001 17.0 313225 0.4411
0.3828 18.0 331650 0.4316
0.3665 19.0 350075 0.4201
0.3592 20.0 368500 0.4142

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Safetensors
Model size
331M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.