Edit model card

BERT_word2vec

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 2048
  • total_eval_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
3.4036 1.0 43283 3.2746
3.0571 2.0 86566 2.9331
2.8967 3.0 129849 2.7814
2.7919 4.0 173132 2.6885
2.7072 5.0 216415 2.6176
2.6512 6.0 259698 2.5633
2.6091 7.0 302981 2.5193
2.5596 8.0 346264 2.4826
2.5291 9.0 389547 2.4491
2.4972 10.0 432830 2.4219
2.4697 11.0 476113 2.3943
2.4311 12.0 519396 2.3714
2.4199 13.0 562679 2.3438
2.3847 14.0 605962 2.3223
2.3508 15.0 649245 2.3042
2.3333 16.0 692528 2.2818
2.3113 17.0 735811 2.2633
2.281 18.0 779094 2.2447
2.2749 19.0 822377 2.2316
2.2541 20.0 865660 2.2223

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
340M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.