Whisper Base Portugese Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8518
  • Wer: 32.5249

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0416 5.0251 1000 0.8330 38.7902
0.0012 10.0503 2000 0.8518 32.5249

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3
Downloads last month
10
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CheeLi03/whisper-tiny-pt-puct-2k

Finetuned
(380)
this model

Evaluation results