vowelizer_1203_v11

This model is a fine-tuned version of Buseak/vowelizer_1203_v9 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Precision: 1.0000
  • Recall: 1.0000
  • F1: 1.0000
  • Accuracy: 1.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0659 1.0 967 0.0290 0.9908 0.9845 0.9877 0.9920
0.0394 2.0 1934 0.0166 0.9950 0.9921 0.9936 0.9955
0.0271 3.0 2901 0.0098 0.9967 0.9958 0.9963 0.9974
0.0202 4.0 3868 0.0059 0.9981 0.9978 0.9979 0.9984
0.0152 5.0 4835 0.0037 0.9989 0.9982 0.9985 0.9991
0.0119 6.0 5802 0.0026 0.9992 0.9989 0.9990 0.9993
0.01 7.0 6769 0.0017 0.9995 0.9992 0.9994 0.9996
0.0077 8.0 7736 0.0013 0.9995 0.9995 0.9995 0.9997
0.0062 9.0 8703 0.0009 0.9996 0.9997 0.9997 0.9998
0.0062 10.0 9670 0.0006 0.9998 0.9998 0.9998 0.9999
0.0051 11.0 10637 0.0006 0.9998 0.9997 0.9998 0.9999
0.0043 12.0 11604 0.0004 0.9999 0.9999 0.9999 0.9999
0.0036 13.0 12571 0.0003 0.9999 0.9999 0.9999 0.9999
0.0031 14.0 13538 0.0002 0.9999 0.9999 0.9999 1.0000
0.0027 15.0 14505 0.0002 1.0000 1.0000 1.0000 1.0000
0.0025 16.0 15472 0.0001 1.0000 0.9999 0.9999 1.0000
0.0021 17.0 16439 0.0001 1.0000 1.0000 1.0000 1.0000
0.0019 18.0 17406 0.0001 1.0000 1.0000 1.0000 1.0000
0.0017 19.0 18373 0.0001 1.0000 1.0000 1.0000 1.0000
0.0016 20.0 19340 0.0001 1.0000 1.0000 1.0000 1.0000

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
707
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.